摘要翻译:
我们证明了在有限散射长度的任意排斥相互作用势的三维稀玻色气体中,通过标度极限可以严格地导出具有排斥δ-函数相互作用的一维玻色子的Lieb-Liniger模型。为此,我们证明了强拉长陷阱中三维玻色子的本征值和相应的本征函数的界,并将它们与Lieb-Liniger模型中的相应量联系起来。特别地,当柱面陷阱的散射长度$A$和半径$R$均为零时,导出了耦合常数$G\sim A/R^2$的Lieb-Liniger模型。在整个参数范围$0\leqg\leq\infty$内,我们的界限在$g$内是一致的,并且适用于在基态能量以上的$\sim r{-2}$的谱窗内的三维玻色子的哈密顿量。
---
英文标题:
《The Lieb-Liniger Model as a Limit of Dilute Bosons in Three Dimensions》
---
作者:
Robert Seiringer, Jun Yin
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Mathematical Physics 数学物理
分类描述:Articles in this category focus on areas of research that illustrate the application of mathematics to problems in physics, develop mathematical methods for such applications, or provide mathematically rigorous formulations of existing physical theories. Submissions to math-ph should be of interest to both physically oriented mathematicians and mathematically oriented physicists; submissions which are primarily of interest to theoretical physicists or to mathematicians should probably be directed to the respective physics/math categories
这一类别的文章集中在说明数学在物理问题中的应用的研究领域,为这类应用开发数学方法,或提供现有物理理论的数学严格公式。提交的数学-PH应该对物理方向的数学家和数学方向的物理学家都感兴趣;主要对理论物理学家或数学家感兴趣的投稿可能应该指向各自的物理/数学类别
--
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Mathematics 数学
二级分类:Mathematical Physics 数学物理
分类描述:math.MP is an alias for math-ph. Articles in this category focus on areas of research that illustrate the application of mathematics to problems in physics, develop mathematical methods for such applications, or provide mathematically rigorous formulations of existing physical theories. Submissions to math-ph should be of interest to both physically oriented mathematicians and mathematically oriented physicists; submissions which are primarily of interest to theoretical physicists or to mathematicians should probably be directed to the respective physics/math categories
math.mp是math-ph的别名。这一类别的文章集中在说明数学在物理问题中的应用的研究领域,为这类应用开发数学方法,或提供现有物理理论的数学严格公式。提交的数学-PH应该对物理方向的数学家和数学方向的物理学家都感兴趣;主要对理论物理学家或数学家感兴趣的投稿可能应该指向各自的物理/数学类别
--
---
英文摘要:
We show that the Lieb-Liniger model for one-dimensional bosons with repulsive $\delta$-function interaction can be rigorously derived via a scaling limit from a dilute three-dimensional Bose gas with arbitrary repulsive interaction potential of finite scattering length. For this purpose, we prove bounds on both the eigenvalues and corresponding eigenfunctions of three-dimensional bosons in strongly elongated traps and relate them to the corresponding quantities in the Lieb-Liniger model. In particular, if both the scattering length $a$ and the radius $r$ of the cylindrical trap go to zero, the Lieb-Liniger model with coupling constant $g \sim a/r^2$ is derived. Our bounds are uniform in $g$ in the whole parameter range $0\leq g\leq \infty$, and apply to the Hamiltonian for three-dimensional bosons in a spectral window of size $\sim r^{-2}$ above the ground state energy.
---
PDF链接:
https://arxiv.org/pdf/709.4022


雷达卡



京公网安备 11010802022788号







