摘要翻译:
讨论了临界最小能量子空间(CMES)方法最近在强无序系统中的应用,该方法用于限制Wang-Landau采样的能量子空间。我们与我们在全能量范围内的多量程Wang-Landau模拟得到的三维随机场Ising模型的结果进行了比较。指出了将CMES格式应用于具有复杂自由能景观的模型时可能出现的一些问题。PACS编号:02.70.TT,02.70.RR,05.50+Q,64.60.CN,64.60.FR,75.10.HK
---
英文标题:
《On the application of the Critical Minimum Energy Subspace method to
disordered systems》
---
作者:
Laura Hernandez (Laboratoire de Physique Theorique et Modelisation,
UMR CNRS-Universite de Cergy-Pontoise, France), Horacio Ceva (Comision
Nacional de Energia Atomica, Buenos Aires, Argentina)
---
最新提交年份:
2008
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:Disordered Systems and Neural Networks 无序系统与神经网络
分类描述:Glasses and spin glasses; properties of random, aperiodic and quasiperiodic systems; transport in disordered media; localization; phenomena mediated by defects and disorder; neural networks
眼镜和旋转眼镜;随机、非周期和准周期系统的性质;无序介质中的传输;本地化;由缺陷和无序介导的现象;神经网络
--
---
英文摘要:
We discuss the recent application to strongly disordered systems of the Critical Minimum Energy Subspace (CMES) method, used to limit the energy subspace of the Wang-Landau sampling. We compare with our results on the 3D Random Field Ising Model obtained by a multi-range Wang-Landau simulation in the whole energy range. We point out at some problems that may arise when applying the CMES scheme to models having a complex free energy landscape. PACS numbers: 02.70.Tt,02.70.Rr,05.50.+q, 64.60.Cn, 64.60.Fr, 75.10.Hk
---
PDF链接:
https://arxiv.org/pdf/709.2159


雷达卡



京公网安备 11010802022788号







