楼主: kedemingshi
299 0

[数学] 上向量丛的正则性与上同调分裂条件 多重射影空间 [推广有奖]

  • 0关注
  • 4粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
15 个
通用积分
89.2735
学术水平
0 点
热心指数
8 点
信用等级
0 点
经验
24665 点
帖子
4127
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
kedemingshi 在职认证  发表于 2022-4-14 21:20:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
本文给出了与Hoffmann-Wang和Costa-Mir\'oRoig定义不同的多射影空间的正则性定义。利用这个概念,我们证明了向量丛的一些分裂准则。
---
英文标题:
《Regularity and Cohomological Splitting Conditions for Vector Bundles on
  Multiprojective Spaces》
---
作者:
Edoardo Ballico and Francesco Malaspina
---
最新提交年份:
2011
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics        数学
二级分类:Commutative Algebra        交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--

---
英文摘要:
  Here we give a definition of regularity on multiprojective spaces which is different from the definitions of Hoffmann-Wang and Costa-Mir\'o Roig. By using this notion we prove some splitting criteria for vector bundles.
---
PDF链接:
https://arxiv.org/pdf/0802.0960
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:正则性 mathematics Computation DEFINITIONS Connections Wang Hoffmann 上同调 give Vector

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-4 00:02