摘要翻译:
本文给出了与Hoffmann-Wang和Costa-Mir\'oRoig定义不同的多射影空间的正则性定义。利用这个概念,我们证明了向量丛的一些分裂准则。
---
英文标题:
《Regularity and Cohomological Splitting Conditions for Vector Bundles on
Multiprojective Spaces》
---
作者:
Edoardo Ballico and Francesco Malaspina
---
最新提交年份:
2011
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
---
英文摘要:
Here we give a definition of regularity on multiprojective spaces which is different from the definitions of Hoffmann-Wang and Costa-Mir\'o Roig. By using this notion we prove some splitting criteria for vector bundles.
---
PDF链接:
https://arxiv.org/pdf/0802.0960


雷达卡



京公网安备 11010802022788号







