摘要翻译:
本文导出了复杂网络中具有最小松弛(SRM)的表面生长模型的界面演化方程。我们受到了离散SRM模型和Edward-Wilkinson过程在无标度网络中的定态涨落的标度结果之间的分歧的启发,这些无标度网络具有度分布$P(k)\sim k^{-\lambda}$for$\lambda<3$[Pastore y Piontti{\it et al.},Phys.Rev.E{\bf 76},046117(2007)]。尽管欧几里德格的演化方程是线性的,但我们发现在复杂的异构网络中,由于网络的异构性和缺乏对称性,会出现非线性项;它们产生饱和粗糙度与系统尺寸的对数分歧,正如Pastore y Piontti{\It et al.}所发现的那样对于$\lambda<3$。
---
英文标题:
《Evolution equation for a model of surface relaxation in complex networks》
---
作者:
C. E. La Rocca, L. A. Braunstein and P. A. Macri
---
最新提交年份:
2008
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:Disordered Systems and Neural Networks 无序系统与神经网络
分类描述:Glasses and spin glasses; properties of random, aperiodic and quasiperiodic systems; transport in disordered media; localization; phenomena mediated by defects and disorder; neural networks
眼镜和旋转眼镜;随机、非周期和准周期系统的性质;无序介质中的传输;本地化;由缺陷和无序介导的现象;神经网络
--
---
英文摘要:
In this paper we derive analytically the evolution equation of the interface for a model of surface growth with relaxation to the minimum (SRM) in complex networks. We were inspired by the disagreement between the scaling results of the steady state of the fluctuations between the discrete SRM model and the Edward-Wilkinson process found in scale-free networks with degree distribution $ P(k) \sim k^{-\lambda}$ for $\lambda <3$ [Pastore y Piontti {\it et al.}, Phys. Rev. E {\bf 76}, 046117 (2007)]. Even though for Euclidean lattices the evolution equation is linear, we find that in complex heterogeneous networks non-linear terms appear due to the heterogeneity and the lack of symmetry of the network; they produce a logarithmic divergency of the saturation roughness with the system size as found by Pastore y Piontti {\it et al.} for $\lambda <3$.
---
PDF链接:
https://arxiv.org/pdf/712.3788


雷达卡



京公网安备 11010802022788号







