|
我们在表3.1中总结了结果。注意到κ的较小值*从表3.1中观察到,κ的值越小,说明尾依赖性越强*Lare,VaR、CTE和MTVar的值越大,而经典指数κLdO没有变化。4个例子我们从几个连词族开始,对于这些连词族,最大依赖的路径可以以封闭形式导出,并且有适度的影响。表3.1:Marshall-Olkin copula与Pareto II边缘的数量(i)-(vi)。依赖风险度量的参数指数qbτκLκ*vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv1 Marshall Olkin copula回想一下,Marshall Olkin copula是由公式(2.5)定义。接下来,为每一个u∈[0,1],函数x7→ 定义在积分[u,1]上的Ca,b(x,u/x)等于u2(1-b) 所有x≤ x=u2b/(a+b)和u/xa表示所有x≥ x、 所以,函数的唯一最大值是在x=x点上实现的,所以马歇尔-奥尔金copula的最大依赖函数是唯一的,并由φ给出*(u) =u2b/(a+b)。(4.1)因此,最大概率为∏*(u) =u2-2ab/(a+b),(4.2),因此最大依赖性的较低尾部指数为κ*L=2-2aba+b.(4.3)4.2 Marshall-Olkin c-Opulas的混合物我们从公式(4.1)中可以看出,当a和仅当a=b时,最大相关路径是对角的,因此当且仅当Marshall-Olkin copula是对称的。接下来,我们证明这个事实不能推广到任意对称copula。也就是说,有一些对称的copula,它们的最大依赖路径不是对角的。
|