|
(5.16)遵循与Leung(2013)相同的路线,采用同伦分析方法从方程(5.13)和(5.15)中求解ui(t,z),i=1,2。现在我们引入一个嵌入参数p∈ [0,1]并构造未知函数Ui(t,z,p),i=1,2,满足以下不同系统:(1 - p) L[\'U(t,z,p)-\'U(t,z)]=-PA[\'U(t,z,p),\'U(t,z,p)]\'U(t,z,p)=g(z)“U”z(t,0,p)=(1)-p)“U”z(t,0)(5.17)(1 - p) L[\'U(t,z,p)-\'U(t,z)]=-PA[\'U(t,z,p),\'U(t,z,p)]\'U(t,z,p)=g(z)“U”z(t,0,p)=(1)- p)“U”z(t,0)(5.18)这里的Li,i=1,2是定义为Li的不同算子=t+σiZ- (ri+σi)z(5.19)和Ai,i=1,2是定义为asA[\'U(t,z,p),\'U(t,z,p)]=L(\'U)的泛函- a(\'U-U(5.20)A[\'U(t,z,p),\'U(t,z,p)]=L(\'U)- a(\'U-U)(5.21)当p=1时,我们有L(\'U)=a(\'U-U)U(t,z,1)=g(z)“U”z(t,z,1)| z=0=0(5.22)L(\'U)=a(\'U-U)U(t,z,1)=g(z)“U”z(t,z,1)| z=0=0(5.23)与(5.13)和(5.15)相比,很明显,t’Ui(t,z,1),i=1,2等于我们的搜索解决方案Ui(t,z),i=1,2。现在我们设定p=0,方程(5.17)和(5.18)变成L[\'U(t,z,p)]=L[\'U(t,z)]\'U(t,z,0)=g(z)“U”z(t,0,0)=“U”z(t,0)(5.24)L[\'U(t,z,p)]=L[\'U(t,z)]\'U(t,z,0)=g(z)“U”z(t,0,0)=“U”z(t,0)(5.25)Ui(t,z,0),i=1,2将等于当Ui(t,z)=g(z),i=1,2时的Ui(t,z)。Ui(t,z)被称为Ui(t,z)的初始猜测。按照与Leung(2013年2月)相同的路线,选择“Ui(t,z)”作为以下PDE的解决方案:L[\'U(t,z)]=0\'U(0,z)=g(z)“U”z(t,z)| z=0=0(5.26)L[\'U(t,z)]=0\'U(0,z)=g(z)“U”z(t,z)| z=0=0(5.27)注意,s’U(t,z)是BlackScholes-Merton模型下的浮动履约回望看跌期权的价格。Goldman等人给出了它的显式封闭式公式。
|