《Box-Cox transformation of firm size data in statistical analysis》
---
作者:
Ting Ting Chen, Tetsuya Takaishi
---
最新提交年份:
2015
---
英文摘要:
Firm size data usually do not show the normality that is often assumed in statistical analysis such as regression analysis. In this study we focus on two firm size data: the number of employees and sale. Those data deviate considerably from a normal distribution. To improve the normality of those data we transform them by the Box-Cox transformation with appropriate parameters. The Box-Cox transformation parameters are determined so that the transformed data best show the kurtosis of a normal distribution. It is found that the two firm size data transformed by the Box-Cox transformation show strong linearity. This indicates that the number of employees and sale have the similar property as a firm size indicator. The Box-Cox parameters obtained for the firm size data are found to be very close to zero. In this case the Box-Cox transformations are approximately a log-transformation. This suggests that the firm size data we used are approximately log-normal distributions.
---
中文摘要:
企业规模数据通常不显示回归分析等统计分析中经常假设的正态性。在本研究中,我们关注两个公司规模数据:员工数量和销售额。这些数据大大偏离了正态分布。为了提高这些数据的正态性,我们使用具有适当参数的Box-Cox变换对它们进行变换。确定Box-Cox变换参数,以便变换后的数据最好地显示正态分布的峰度。研究发现,通过Box-Cox变换得到的两个企业规模数据具有很强的线性关系。这表明员工数量和销售额与公司规模指标具有相似的属性。公司规模数据的Box-Cox参数非常接近于零。在这种情况下,Box-Cox变换近似于对数变换。这表明我们使用的公司规模数据近似于对数正态分布。
---
分类信息:
一级分类:Statistics 统计学
二级分类:Applications 应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
---
PDF下载:
-->
Box-Cox_transformation_of_firm_size_data_in_statistical_analysis.pdf
(752.58 KB)


雷达卡



京公网安备 11010802022788号







