楼主: 大多数88
572 13

[量化金融] 基于Copula的层次风险聚合-树依赖抽样和 [推广有奖]

11
kedemingshi 在职认证  发表于 2022-5-26 11:40:16
上述主张的证明将成为本章第二部分的主题。4.1改进的重新排序算法基于Arbenz的重新排序算法(算法3.1和定理3.2),我们提出了一种改进的重新排序算法(MRA)。这些修改将在定理4.5的证明中发挥重要作用,我们将在下一节中说明。第一个修改涉及实现相互关联的顺序。请看下面的示例4.1,其中我们说明了这是什么意思。例4.1考虑最简单的树τ={, 1,2},带两个边距X~F、 X个~ 由copula U给出的依赖结构~ C. 假设4。n=3的树相关采样模拟得出以下Xk、Xk和Uk:X=1,X=4,X=2,X=9,X=0,X=3,U= (0.6,0.8),U= (0.3,0.7),U= (0.5,0.1)。回想一下,我们用Rk,Ii表示英国的等级,Ii在setnUj内,iIonj=1。copula样本的ranks为(R1,1, R1,2) = (3,3),(R2,1, R2,2) = (1,2),(R3,1, R3,2) = (2,1)。对于π,i(k):=Rk,ii,置换是p,1: (1、2、3)7→ (3,1,2),p,2: (1、2、3)7→ (3、2、1)。此外,我们用Qk表示,1(分别为Qk,2) 集合中Xk(分别为Xk)的等级Xk公司k=1(分别为。Xk公司k=1)并确定置换q,1(k):=Qk,1andq公司,2(k):=Qk,2:q,1: (1、2、3)7→ (1,3,2),q,2: (1、2、3)7→ (3、1、2)。我们还将使用逆置换p的表示法-1.,1,p-1.,2,q-1.,1和q-1.,在下文中,我们提出了两种不同的再订购订单。我们从Arbenz等人[1]在定理3.2中提出的更自然的一个开始。重新订购1(Arbenz)LetRe1X,Re1X,Re1X表示重新排序的向量。下标“Re1”表示应用了“重新排序1”。按照定理3.2中的顺序,我们得到了re1xk:=X(p,1(k))X(p,2(k))=Xq公司-1.,1(p,1(k))Xq-1.,2(p,2(k))对于k=1。

12
mingdashike22 在职认证  发表于 2022-5-26 11:40:18
3.下图说明了样本如何相互关联(英国Xktop row中行,Xbottom行):4.1。修改后的重新排序算法重新排序2在上述“重新排序1”中,我们将适当的订单统计数据与英国组件相关的排名联系起来为了获得1xK.此过程由英国的箭头所示朝向适当的边缘。重新排序样本的另一种方法是设置2xk的第一个分量等于XK,然后将适当的第二个组件链接到它:注意我们如何更改箭头的方向,以说明两个重新排序顺序之间的差异。数学上,Re2Xk可写为RE2XK:=XkXq-1.,2(p,2(p-1.,1(q(k))!对于k=1,3.(4.1)很明显,两个重排序次序产生相同的原子,即集合Re1X,Re1X,Re1X和Re2X,Re2X型,Re2X型包含相同的元素,但通常顺序不同。因此,“修改”事实上对定理3.3中的收敛结果没有任何影响。第二次修改可视为主要修改。它旨在改变算法,使其产生i.i.d.实现。让我们关注一下随机向量re2x,Re2X型,Re2X型注意,这些确实是由i.i.d.随机变量X,X,X组成的随机向量~ 风扇X,X,X~ F、 通过一个简单的对称性论证,很明显re2x,Re2X型,Re2X型分布相同。然而,正如Arbenz等人已经正确指出的那样,它们是不独立的,因此重新排序的随机向量re2x,Re2X型,Re2X型阿伦诺i.i.d。。为了绕过这个限制,我们可以如下进行:执行算法三次,以获得重新排序样本的三个独立副本。

13
能者818 在职认证  发表于 2022-5-26 11:40:22
我们用NRE2X表示第一份副本,Re2X型,Re2X型o、 第二个是NRE2X,Re2X型,Re2X型o、 第三个是NRE2X,Re2X型,Re2X型oand setRe2X:=Re2X型,Re2X型:=Re2X型,Re2X型:=Re2X型. (4.2)4。树相关抽样如此定义的重新排序随机向量re2x,Re2X型,Re2X型现在很清楚了。i、 d。。然而,请注意,这是以更差的算法效率为代价的。在讨论了这两个主要修改之后,我们现在准备制定和理解MRA。不幸的是,由于上述修改,算法变得异常复杂。与其纠结于符号,我们建议将重点放在前面讨论中提出的泛化数据上,并查看解释性备注4.3。下面,置换表示从{1,2,…,n}到{1,2,…,n}的双射映射。算法4.2(修改的重新排序算法-MRA)修复n∈ N、 样本从树的底部到顶部递归定义。1、从叶节点XI,I生成n×n个独立样本∈ L和连接词CI,I∈ Bo`XkI~ FI,用于(`,k)∈{1,…,n},o`UkI=(`Uk,1I,…`Uk,NII)~ CI,用于(`,k)∈{1,…,n}。回想一下,我们用“Rk,ii”表示“Uk,ii在setn”Uj内的排名,iIonj=1。让我∈ τ\\ 排列\'pI,`=1,n、 通过` pI,i(k)=` Rk,iI,k=1,…\'定义,n并用\'p\'表示-1I,i(·)它们的倒数。2、递归定义`=1,n个样本\'XkI,k=1,n、 我∈ B作者\'XkI=∑J∈C(I)`X`q-1J(`pJ(`p-1I,1(\'qI,1(k)))J=\'XkI,1++`X`q-1I,NI(`pI,NI(`p-1I,1(\'qI,1(k)))I,NI,(4.3)和样品\'XkIby\'XkI=`XkI,1,`X`q-1I,2(`pI,2(`p-1 I,1(`qI,1(k)))I,2`X`q-1I,NI(`pI,NI(`p-1I,1(`qI,1(k)))I,NI,(4.4)其中通过\'qJ(k)=\'QkJand\'QkJdenotes定义的置换\'qJare表示集合内\'xkjj的等级\'XjJonj=1.3。对于k=1,n setXkI:=kXkI,(4.5)XkI:=kXkI。(4.6)4.2。收敛结果4。

14
mingdashike22 在职认证  发表于 2022-5-26 11:40:26
如果我们还没有找到根源, 重复该算法直到现在n次,以生成n个独立副本onXkIonk=1,nnXkIonk=1个重新排序的样本XkI公司nk=1;onXkIonk=1,nnXkIonk=1个重新排序的样本NXKIONK=1.5。重复步骤2-4,直到到达根节点 在树上。备注4.31。在MRA的第2步中,对于“固定”,我们只需递归定义重新排序的样本。重新排序顺序的选择应确保重新排序样本的第一个组成部分是固定的(比较例4.1中的“重新排序2”)2。由于`从`=1运行,n、 我们获得了n个独立的重新排序样本集。在步骤3中,我们使用类似于(4.2)的对角化过程,该过程产生n个i.i.d.样本。3、如果尚未到达根节点,则需要这些i.i.d.样本的n个独立副本,以便继续下一个递归步骤。这些独立副本在步骤4.4.2收敛结果中生成。在本节中,我们将讨论MRA的收敛特性。首先,我们在第4.2.1小节中说明定理3.3中的结果对于MRA也是正确的。除此之外,MRA允许我们证明goesbeyond已经存在的结果。我们在第4.2.2.4.2.1小节中陈述并证明了该收敛结果。由于进行了修改,基本收敛结果。目前尚不清楚定理3.3中的收敛结果是否仍然适用于MRA。我们在上一节中提到,第一次修改(即重新排序顺序的更改)不会影响这一结果,因为我们获得了相同的重新排序样本(可能以不同的顺序)。然而,第二个也是更重要的修改可能会影响结果。幸运的是,我们可以证明,当我们额外假设边缘是离散的(有限或无限)时,情况并非如此。

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-19 10:46