楼主: 能者818
272 0

[量化金融] 艾森伯格Noe清算向量对单个银行间同业的敏感性 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
39.5640
学术水平
0 点
热心指数
1 点
信用等级
0 点
经验
24699 点
帖子
4115
精华
0
在线时间
1 小时
注册时间
2022-2-24
最后登录
2024-12-24

楼主
能者818 在职认证  发表于 2022-6-1 05:13:42 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
英文标题:
《Sensitivity of the Eisenberg-Noe clearing vector to individual interbank
  liabilities》
---
作者:
Zachary Feinstein, Weijie Pang, Birgit Rudloff, Eric Schaanning,
  Stephan Sturm, Mackenzie Wildman
---
最新提交年份:
2018
---
英文摘要:
  We quantify the sensitivity of the Eisenberg-Noe clearing vector to estimation errors in the bilateral liabilities of a financial system in a stylized setting. The interbank liabilities matrix is a crucial input to the computation of the clearing vector. However, in practice central bankers and regulators must often estimate this matrix because complete information on bilateral liabilities is rarely available. As a result, the clearing vector may suffer from estimation errors in the liabilities matrix. We quantify the clearing vector\'s sensitivity to such estimation errors and show that its directional derivatives are, like the clearing vector itself, solutions of fixed point equations. We describe estimation errors utilizing a basis for the space of matrices representing permissible perturbations and derive analytical solutions to the maximal deviations of the Eisenberg-Noe clearing vector. This allows us to compute upper bounds for the worst case perturbations of the clearing vector in our simple setting. Moreover, we quantify the probability of observing clearing vector deviations of a certain magnitude, for uniformly or normally distributed errors in the relative liability matrix.   Applying our methodology to a dataset of European banks, we find that perturbations to the relative liabilities can result in economically sizeable differences that could lead to an underestimation of the risk of contagion. Our results are a first step towards allowing regulators to quantify errors in their simulations.
---
中文摘要:
我们量化了艾森伯格-诺伊清算向量对程式化环境下金融系统双边负债估计误差的敏感性。银行间负债矩阵是计算清算向量的关键输入。然而,在实践中,央行行长和监管机构必须经常估计这一矩阵,因为很少有关于双边债务的完整信息。因此,清算向量可能会在负债矩阵中出现估计错误。我们量化了清除向量对此类估计误差的敏感性,并表明其方向导数与清除向量本身一样,是不动点方程的解。我们利用表示允许扰动的矩阵空间的基来描述估计误差,并导出艾森伯格-诺埃清除向量最大偏差的解析解。这允许我们在简单设置中计算清除向量最坏情况下扰动的上界。此外,对于相对责任矩阵中的均匀或正态分布误差,我们量化了观察到一定量级的清除向量偏差的概率。将我们的方法应用于欧洲银行的数据集,我们发现,相对负债的扰动可能会导致经济上的巨大差异,从而导致对传染风险的低估。我们的结果是朝着允许监管机构量化模拟误差迈出的第一步。
---
分类信息:

一级分类:Quantitative Finance        数量金融学
二级分类:Mathematical Finance        数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
一级分类:Quantitative Finance        数量金融学
二级分类:Risk Management        风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--

---
PDF下载:
-->
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Noe 银行间 敏感性 Perturbation Quantitative

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-24 21:36