楼主: 大多数88
173 0

[量化金融] 在多个时间范围内预测股市回报 [推广有奖]

  • 0关注
  • 3粉丝

会员

学术权威

67%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
64.4541
学术水平
0 点
热心指数
4 点
信用等级
0 点
经验
23363 点
帖子
3832
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

相似文件 换一批

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
英文标题:
《Forecasting stock market returns over multiple time horizons》
---
作者:
Dimitri Kroujiline, Maxim Gusev, Dmitry Ushanov, Sergey V. Sharov and
  Boris Govorkov
---
最新提交年份:
2016
---
英文摘要:
  In this paper we seek to demonstrate the predictability of stock market returns and explain the nature of this return predictability. To this end, we introduce investors with different investment horizons into the news-driven, analytic, agent-based market model developed in Gusev et al. (2015). This heterogeneous framework enables us to capture dynamics at multiple timescales, expanding the model\'s applications and improving precision. We study the heterogeneous model theoretically and empirically to highlight essential mechanisms underlying certain market behaviors, such as transitions between bull- and bear markets and the self-similar behavior of price changes. Most importantly, we apply this model to show that the stock market is nearly efficient on intraday timescales, adjusting quickly to incoming news, but becomes inefficient on longer timescales, where news may have a long-lasting nonlinear impact on dynamics, attributable to a feedback mechanism acting over these horizons. Then, using the model, we design algorithmic strategies that utilize news flow, quantified and measured, as the only input to trade on market return forecasts over multiple horizons, from days to months. The backtested results suggest that the return is predictable to the extent that successful trading strategies can be constructed to harness this predictability.
---
中文摘要:
在本文中,我们试图证明股票市场收益的可预测性,并解释这种收益可预测性的性质。为此,我们将具有不同投资视野的投资者引入Gusev等人(2015)开发的新闻驱动、分析、基于代理的市场模型。这种异构框架使我们能够在多个时间尺度上捕获动态,扩展模型的应用程序并提高精度。我们从理论和实证上研究了异质模型,以强调某些市场行为背后的基本机制,例如牛市和熊市之间的转换以及价格变化的自相似行为。最重要的是,我们应用该模型表明,股票市场在日内时间尺度上几乎是有效的,能够快速适应即将到来的新闻,但在较长的时间尺度上变得效率低下,在较长的时间尺度上,新闻可能会对动态产生长期的非线性影响,这归因于在这些时间尺度上作用的反馈机制。然后,利用该模型,我们设计了算法策略,利用量化和测量的新闻流作为多个时段(从几天到几个月)市场回报预测的唯一输入。回溯测试结果表明,如果能够构建成功的交易策略来利用这种可预测性,那么回报是可预测的。
---
分类信息:

一级分类:Quantitative Finance        数量金融学
二级分类:General Finance        一般财务
分类描述:Development of general quantitative methodologies with applications in finance
通用定量方法的发展及其在金融中的应用
--
一级分类:Physics        物理学
二级分类:Physics and Society        物理学与社会
分类描述:Structure, dynamics and collective behavior of societies and groups (human or otherwise). Quantitative analysis of social networks and other complex networks. Physics and engineering of infrastructure and systems of broad societal impact (e.g., energy grids, transportation networks).
社会和团体(人类或其他)的结构、动态和集体行为。社会网络和其他复杂网络的定量分析。具有广泛社会影响的基础设施和系统(如能源网、运输网络)的物理和工程。
--

---
PDF下载:
--> Forecasting_stock_market_returns_over_multiple_time_horizons.pdf (1.95 MB)
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Quantitative Applications QUANTITATIV Application Inefficient

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加JingGuanBbs
拉您进交流群

京ICP备16021002-2号 京B2-20170662号 京公网安备 11010802022788号 论坛法律顾问:王进律师 知识产权保护声明   免责及隐私声明

GMT+8, 2024-11-5 17:32