《Approaches Toward the Bayesian Estimation of the Stochastic Volatility
Model with Leverage》
---
作者:
Darjus Hosszejni and Gregor Kastner
---
最新提交年份:
2019
---
英文摘要:
The sampling efficiency of MCMC methods in Bayesian inference for stochastic volatility (SV) models is known to highly depend on the actual parameter values, and the effectiveness of samplers based on different parameterizations varies significantly. We derive novel algorithms for the centered and the non-centered parameterizations of the practically highly relevant SV model with leverage, where the return process and innovations of the volatility process are allowed to correlate. Moreover, based on the idea of ancillarity-sufficiency interweaving (ASIS), we combine the resulting samplers in order to guarantee stable sampling efficiency irrespective of the baseline parameterization.We carry out an extensive comparison to already existing sampling methods for this model using simulated as well as real world data.
---
中文摘要:
众所周知,随机波动率(SV)模型贝叶斯推理中MCMC方法的采样效率高度依赖于实际参数值,基于不同参数化的采样器的有效性差异很大。我们推导了具有杠杆作用的实际高度相关SV模型的中心和非中心参数化的新算法,其中允许收益过程和波动过程的创新相关联。此外,基于辅助充分交织(ASIS)的思想,我们将得到的采样器组合在一起,以保证稳定的采样效率,而与基线参数化无关。我们使用模拟数据和真实数据对该模型的现有抽样方法进行了广泛比较。
---
分类信息:
一级分类:Statistics 统计学
二级分类:Computation 计算
分类描述:Algorithms, Simulation, Visualization
算法、模拟、可视化
--
一级分类:Economics 经济学
二级分类:Econometrics 计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Statistics 统计学
二级分类:Methodology 方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
---
PDF下载:
-->
Approaches_Toward_the_Bayesian_Estimation_of_the_Stochastic_Volatility_Model_wit.pdf
(317.42 KB)


雷达卡



京公网安备 11010802022788号







