《Optimizing Market Making using Multi-Agent Reinforcement Learning》
---
作者:
Yagna Patel
---
最新提交年份:
2018
---
英文摘要:
In this paper, reinforcement learning is applied to the problem of optimizing market making. A multi-agent reinforcement learning framework is used to optimally place limit orders that lead to successful trades. The framework consists of two agents. The macro-agent optimizes on making the decision to buy, sell, or hold an asset. The micro-agent optimizes on placing limit orders within the limit order book. For the context of this paper, the proposed framework is applied and studied on the Bitcoin cryptocurrency market. The goal of this paper is to show that reinforcement learning is a viable strategy that can be applied to complex problems (with complex environments) such as market making.
---
中文摘要:
本文将强化学习应用于做市优化问题。一个多智能体强化学习框架用于优化下达限制订单,从而实现成功交易。该框架由两个代理组成。宏观代理在做出购买、出售或持有资产的决策时进行优化。微代理在限额订单簿中下达限额订单时进行优化。在本文的背景下,将所提出的框架应用于比特币加密货币市场并进行了研究。本文的目的是证明强化学习是一种可行的策略,可以应用于复杂问题(具有复杂环境),如做市。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Trading and Market Microstructure 交易与市场微观结构
分类描述:Market microstructure, liquidity, exchange and auction design, automated trading, agent-based modeling and market-making
市场微观结构,流动性,交易和拍卖设计,自动化交易,基于代理的建模和做市
--
一级分类:Computer Science 计算机科学
二级分类:Machine Learning 机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Statistics 统计学
二级分类:Machine Learning 机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
---
PDF下载:
-->
Optimizing_Market_Making_using_Multi-Agent_Reinforcement_Learning.pdf
(2.42 MB)


雷达卡



京公网安备 11010802022788号







