楼主: dnq
2086 0

[投资学] 物理学诺奖获得者的论文下载 [推广有奖]

教师

已卖:409份资源

学术权威

8%

还不是VIP/贵宾

-

威望
0
论坛币
9102 个
通用积分
455.1166
学术水平
64 点
热心指数
77 点
信用等级
59 点
经验
76903 点
帖子
4383
精华
1
在线时间
4739 小时
注册时间
2006-10-22
最后登录
2025-11-26

楼主
dnq 发表于 2024-10-10 16:40:30 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
如需批量上传资料Olfaction and color vision:

    [color=rgba(83, 100, 121, 0.9)]J. Hopfield
    [color=rgba(83, 100, 121, 0.9)]Psychology
  • [color=rgba(83, 100, 121, 0.9)]6 October 2020
Publisher(opens in a new tab)
Save
Alert
Cite





Large Associative Memory Problem in Neurobiology and Machine LearningTLDR


These models are effective descriptions of a more microscopic theory that has additional (hidden) neurons and only requires two-body interactions between them and are a valid model of large associative memory with a degree of biological plausibility.Expand


arXiv(opens in a new tab)
Save
Alert
Cite





Bio-Inspired Hashing for Unsupervised Similarity SearchTLDR


This work proposes a novel hashing algorithm BioHash that produces sparse high dimensional hash codes in a data-driven manner and shows that BioHash outperforms previously published benchmarks for various hashing methods.Expand


arXiv(opens in a new tab)
Save
Alert
Cite





Local Unsupervised Learning for Image AnalysisTLDR


The design of a local algorithm that can learn convolutional filters at scale on large image datasets and a successful transfer of learned representations between CIFAR-10 and ImageNet 32x32 datasets hint at the possibility that local unsupervised training might be a powerful tool for learning general representations (without specifying the task) directly from unlabeled data.Expand


arXiv(opens in a new tab)
Save
Alert
Cite





Neural networksIEEE(opens in a new tab)
Save
Alert
Cite





Unsupervised learning by competing hidden unitsTLDR


A learning algorithm is designed that utilizes global inhibition in the hidden layer and is capable of learning early feature detectors in a completely unsupervised way, and which is motivated by Hebb’s idea that change of the synapse strength should be local.Expand


NAS(opens in a new tab)
Save
Alert
Cite





Feature to prototype transition in neural networks

    [color=rgba(83, 100, 121, 0.9)]D. KrotovJ. Hopfield
    [color=rgba(83, 100, 121, 0.9)]Physics, Computer Science
  • [color=rgba(83, 100, 121, 0.9)]15 March 2017
Save
Alert
Cite





Dense Associative Memory Is Robust to Adversarial Inputs

    [color=rgba(83, 100, 121, 0.9)]D. KrotovJ. Hopfield
    [color=rgba(83, 100, 121, 0.9)]Computer Science

    [color=rgba(83, 100, 121, 0.9)]Neural Computation
  • [color=rgba(83, 100, 121, 0.9)]4 January 2017
TLDR


DAMs with higher-order energy functions are more robust to adversarial and rubbish inputs than DNNs with rectified linear units and open up the possibility of using higher- order models for detecting and stopping malicious adversarial attacks.Expand


MIT Press(opens in a new tab)
Save
Alert
Cite





Dense Associative Memory for Pattern RecognitionTLDR


The proposed duality makes it possible to apply energy-based intuition from associative memory to analyze computational properties of neural networks with unusual activation functions - the higher rectified polynomials which until now have not been used in deep learning.Expand


arXiv(opens in a new tab)
Save
Alert
Cite





Understanding Emergent Dynamics: Using a Collective Activity Coordinate of a Neural Network to Recognize Time-Varying Patterns

    [color=rgba(83, 100, 121, 0.9)]J. Hopfield
    [color=rgba(83, 100, 121, 0.9)]Computer Science, Biology

    [color=rgba(83, 100, 121, 0.9)]Neural Computation
  • [color=rgba(83, 100, 121, 0.9)]1 October 2015
TLDR


How the emergent computational dynamics of a biologically based neural network generates a robust natural solution to the problem of categorizing time-varying stimulus patterns such as spoken words or animal stereotypical behaviors is described.Expand

MIT Press(opens in a new tab)
Save
Alert





Cite发帖,请点击上方的批量上传发帖按钮
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:诺奖获得者 论文下载 获得者 物理学 Presentation

已有 1 人评分经验 收起 理由
wwqqer + 100 精彩帖子

总评分: 经验 + 100   查看全部评分

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jr
拉您进交流群
GMT+8, 2026-2-1 23:01