基于鱼群神经网络的信息安全性评价与研究论文
信息安全评估是保障和维护网络信息安全的重要环节。针对
BP神经网络技术在对信息安全进行评估时存在的收敛速度慢、不易获得全局最优解、诊断精度低以及网络结构不确定等缺点,而人工鱼群算法具有较优的全局收敛能力及较快的寻优速度。因此,本文利用人工鱼群算法对
BP神经网络的初始权值和阈值进行了优化,建立了一种新的网络信息安全评价模型,并将该模型应用到具体的评价实例中。结果表明,人工鱼群神经网络算法具有收敛速度快及泛化能力强的优点,为信息安全评估提供一种高效、准确及可靠的方法。
目前国内外常用的信息安全风险评价
模型主要由层次分析法
(AHP)
、基于概率统计的
ALE算法,模糊综合评价法等,也取得了一定的研究成果。但上述算法的基本思想是基于线性映射和概率密度分布的,即各风险指标与最终评价结果之间存在着线性关系
[2]。然而,这种关系的存在是否科学至今也没有得到准确的答复,同时这些方法在实施时虽然给出了定量计算的算法,但操作较为繁琐,难以达到快速识别的要求。目前应用较广泛的
BP神经网络评价算法存在着网络参数难确定、收敛速度较慢且易陷入极小值等问题。为了 ...


雷达卡




京公网安备 11010802022788号







