当前离散数学的具体应用探析论文
一、离散数学的概念
离散数学作为现代数学的一个十分重要的分支,同时是计算机科学和相关技术的理论基础,所以又被人们戏称为计算机的数学
[1].
一般的,广义离散数学的概念包含了图论、数论、集合论、信息论、数理逻辑、关系理论、代数结构、组合数学等等概念,现代又加上了算法设计、组合分析、计算模型等应用方向,总的来说,离散数学是一门综合学科,而其应用则遍及现代科学与技术的诸多领域。
二、离散数学在高中数学中的体现
离散数学的概念对于我们高中生来说可能相对陌生,但其实,我们高中数学中很多知识都常常涉及到离散数学。相较于我们平时接触较多的连续性数学而言,离散数学侧重于思维方式和逻辑过程的应用于体现,可以说是数学中一个非常特别的分支,在应用的过程中主要是构建起一种专属的思维方式。这种方式既有别于传统的对事物的理解与推论,还与常规的数学解题思维有着很大的不同。而高中阶段像我们学习所涉及的数理逻辑、集合、数列等知识都是离散数学的基础概念。
以一个简单的高中数学命题的问题为例:高中数学的命题关系的讨论,其中常见的命题
形式有:若
p则q,以及与其相关的原命题、逆命题、否命题 ...


雷达卡




京公网安备 11010802022788号







