xtreg lnchanzhi lnziben lnrenshu jiaoyi,fe
Fixed-effects (within) regression Number of obs = 38
Group variable (i): diqu Number of groups = 19
R-sq: within = 0.9315 Obs per group: min = 2
between = 0.9600 avg = 2.0
overall = 0.9530 max = 2
F(3,16) = 72.51
corr(u_i, Xb) = -0.9314 Prob > F = 0.0000
------------------------------------------------------------------------------
lnchanzhi | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
lnziben | .4143423 .1174352 3.53 0.003 .1653907 .6632939
lnrenshu | 1.646248 .4142596 3.97 0.001 .768057 2.524439
jiaoyi | -.4148017 .32936 -1.26 0.226 -1.113014 .2834102
_cons | -3.140117 1.040475 -3.02 0.008 -5.345826 -.9344083
-------------+----------------------------------------------------------------
sigma_u | .75801058
sigma_e | .11302602
rho | .97825015 (fraction of variance due to u_i)
------------------------------------------------------------------------------
F test that all u_i=0: F(18, 16) = 7.24 Prob > F = 0.0001
.
.
. xtreg lnchanzhi lnziben lnrenshu jiaoyi,re
Random-effects GLS regression Number of obs = 38
Group variable (i): diqu Number of groups = 19
R-sq: within = 0.8981 Obs per group: min = 2
between = 0.9707 avg = 2.0
overall = 0.9669 max = 2
Random effects u_i ~ Gaussian Wald chi2(3) = 695.96
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
------------------------------------------------------------------------------
lnchanzhi | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
lnziben | .6139068 .0849526 7.23 0.000 .4474027 .7804109
lnrenshu | .7080905 .1067483 6.63 0.000 .4988676 .9173133
jiaoyi | .1667369 .2205208 0.76 0.450 -.2654759 .5989498
_cons | -.5485092 .3959151 -1.39 0.166 -1.324488 .2274701
-------------+----------------------------------------------------------------
sigma_u | .1722379
sigma_e | .11302602
rho | .69899511 (fraction of variance due to u_i)
------------------------------------------------------------------------------
. xttest0
Breusch and Pagan Lagrangian multiplier test for random effects:
lnchanzhi[diqu,t] = Xb + u[diqu] + e[diqu,t]
Estimated results:
| Var sd = sqrt(Var)
---------+-----------------------------
lnchanzhi | 1.691057 1.300406
e | .0127749 .113026
u | .0296659 .1722379
Test: Var(u) = 0
chi2(1) = 4.29
Prob > chi2 = 0.0382
. xthausman
(Warning: xthausman is no longer a supported command; use -hausman-. For
instructions, see help hausman.)
Hausman specification test
---- Coefficients ----
| Fixed Random
lnchanzhi | Effects Effects Difference
-------------+-----------------------------------------
lnziben | .4143423 .6139068 -.1995645
lnrenshu | 1.646248 .7080905 .9381576
jiaoyi | -.4148017 .1667369 -.5815386
Test: Ho: difference in coefficients not systematic
chi2( 3) = (b-B)'[S^(-1)](b-B), S = (S_fe - S_re)
= 12.84
Prob>chi2 = 0.0050
根据检验应选择固定效应模型,但是,固定效应中的jiaoyi变量的回归系数为负,不符合经济学解释,而在随机效应中为正,正是偶需要的模型。应该怎么选择呢?谢谢。