楼主: nivastuli
880 13

Machine Learning From the Classics to Deep Networks, Transformers, and Diffusio [推广有奖]

已卖:29491份资源

学术权威

41%

还不是VIP/贵宾

-

威望
1
论坛币
196048 个
通用积分
3129.9544
学术水平
368 点
热心指数
571 点
信用等级
429 点
经验
99143 点
帖子
2668
精华
1
在线时间
6941 小时
注册时间
2013-11-17
最后登录
2026-1-6

楼主
nivastuli 在职认证  发表于 2025-2-12 11:20:14 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

Machine Learning: From the Classics to Deep Networks, Transformers and Diffusion Models, Third Edition starts with the basics, including least squares regression and maximum likelihood methods, Bayesian decision theory, logistic regression, and decision trees. It then progresses to more recent techniques, covering sparse modelling methods, learning in reproducing kernel Hilbert spaces and support vector machines. Bayesian learning is treated in detail with emphasis on the EM algorithm and its approximate variational versions with a focus on mixture modelling, regression and classification. Nonparametric Bayesian learning, including Gaussian, Chinese restaurant, and Indian buffet processes are also presented. Monte Carlo methods, particle filtering, probabilistic graphical models with emphasis on Bayesian networks and hidden Markov models are treated in detail. Dimensionality reduction and latent variables modelling are considered in depth. Neural networks and deep learning are thoroughly presented, starting from the perceptron rule and multilayer perceptrons and moving on to convolutional and recurrent neural networks, adversarial learning, capsule networks, deep belief networks, GANs, and VAEs. The book also covers the fundamentals on statistical parameter estimation and optimization algorithms.

Focusing on the physical reasoning behind the mathematics, without sacrificing rigor, all methods and techniques are explained in depth, supported by examples and problems, providing an invaluable resource to the student and researcher for understanding and applying machine learning concepts.

  • [color=var(--__N4QdCheV6mGo,#0f1111)]Provides a number of case studies and applications on a variety of topics, such as target localization, channel equalization, image denoising, audio characterization, text authorship identification, visual tracking, change point detection, hyperspectral image unmixing, fMRI data analysis, machine translation, and text-to-image generation
  • [color=var(--__N4QdCheV6mGo,#0f1111)]Most chapters include a number of computer exercises in both MatLab and Python, and the chapters dedicated to deep learning include exercises in PyTorch
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Transformers transform Classics Learning Networks

61LU2LAYgKL.jpg (64.58 KB)

61LU2LAYgKL.jpg

Academic Press - Machine Learning From the Classics to Deep Networks, Transform.pdf
下载链接: https://bbs.pinggu.org/a-6380180.html

21.42 MB

需要: 20 个论坛币  [购买]

Machine Learning From the Classics to Deep Networks, Transformers, and Diffusio

Academic Press - Machine Learning From the Classics to Deep Networks, Transform.pdf

21.42 MB

需要: 20 个论坛币  [购买]

Machine Learning From the Classics to Deep Networks, Transformers, and Diffusio

沙发
nickyxfgsm(真实交易用户) 发表于 2025-2-12 14:01:38
十分感谢!

藤椅
yiyijiayuan(未真实交易用户) 在职认证  发表于 2025-2-13 06:59:54
友情支持。

板凳
xujingjun(未真实交易用户) 发表于 2025-2-13 09:31:24

报纸
happysteps(未真实交易用户) 发表于 2025-2-13 10:49:40
谢谢分享!

地板
是没什么(未真实交易用户) 发表于 2025-2-13 10:54:31
谢谢分享!

7
kathyli97(真实交易用户) 发表于 2025-2-13 10:54:51
谢谢分享

8
Edwardu(未真实交易用户) 发表于 2025-2-13 15:25:35
谢谢分享

9
zoomivy(未真实交易用户) 发表于 2025-2-13 15:54:39
谢谢分享!

10
bloodfi(未真实交易用户) 发表于 2025-2-13 17:40:01
谢谢分享!

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-6 16:08