楼主: Luce2030
143 0

[其他] Bayesian Nonparametrics for Causal Inference and Missing Data [推广有奖]

  • 0关注
  • 3粉丝

已卖:179份资源

教授

96%

还不是VIP/贵宾

-

威望
0
论坛币
61 个
通用积分
108.4266
学术水平
11 点
热心指数
34 点
信用等级
4 点
经验
19298 点
帖子
1253
精华
0
在线时间
783 小时
注册时间
2024-1-22
最后登录
2026-1-22

楼主
Luce2030 发表于 2025-3-15 21:46:35 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
TextbookBayesian Nonparametrics for Causal Inference and Missing Data
Author(s): Michael J. Daniels
MIT - Massachusetts Institute of Technology

Description:
Bayesian Nonparametrics for Causal Inference and Missing Data provides an overview of flexible Bayesian nonparametric (BNP) methods for modeling joint or conditional distributions and functional relationships, and their interplay with causal inference and missing data. This book emphasizes the importance of making untestable assumptions to identify estimands of interest, such as missing at random assumption for missing data and unconfoundedness for causal inference in observational studies. Unlike parametric methods, the BNP approach can account for possible violations of assumptions and minimize concerns about model misspecification. The overall strategy is to first specify BNP models for observed data and then to specify additional uncheckable assumptions to identify estimands of interest.

The book is divided into three parts. Part I develops the key concepts in causal inference and missing data and reviews relevant concepts in Bayesian inference. Part II introduces the fundamental BNP tools required to address causal inference and missing data problems. Part III shows how the BNP approach can be applied in a variety of case studies. The datasets in the case studies come from electronic health records data, survey data, cohort studies, and randomized clinical trials.

Features

• Thorough discussion of both BNP and its interplay with causal inference and missing data

• How to use BNP and g-computation for causal inference and non-ignorable missingness

• How to derive and calibrate sensitivity parameters to assess sensitivity to deviations from uncheckable causal and/or missingness assumptions

• Detailed case studies illustrating the application of BNP methods to causal inference and missing data

• R code and/or packages to implement BNP in causal inference and missing data problems



Bayesian Nonparametrics for Causal Inference and Missing Data .pdf (35.55 MB, 需要: RMB 19 元)



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Parametric Inference Bayesian metrics nonpara

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-23 15:17