求不规则四边形面积的两种方法_学习方法网
---------------------------------------
一. 作辅助线转化,化不规则四边形为规则图形
1. 作对角线,化四边形为三角形
例1. 如图1所示,凸四边形ABCD的四边AB、BC、CD和DA的长分别是3、4、12和3,,求四边形ABCD的面积。
图1解析:考虑到B为直角,连结AC,则
为直角三角形。
所以例2. 如图2所示,在矩形ABCD中,△AMD的面积为15,△BCN的面积为20,则四边形MFNE的面积为_______________。
图2解析:连结EF,将四边形面积转化为两三角形面积之和。由等积变化知,△EFM与△AMD面积相等,△EFN与△BCN面积相等。故所求面积为15+20=35。
2. 通过“割补”,化不规则四边形为规则图形
例3. 如图3所示,△ABC中,AB=AC=2,,D是BC中点,过D作,则四边形AEDF的面积为________________。
图3解析:过中点D作,则DG、DH是△ABC的中位线,,即将△DFH割下补在△DEG处,于是所求面积转化为边长为1的正 ...


雷达卡




京公网安备 11010802022788号







