楼主: ccpoo
15589 19

An Introduction to Probability Theory and Its Applications, Volume 1 [推广有奖]

  • 0关注
  • 16粉丝

少林寺小沙弥

已卖:10703份资源

副教授

42%

还不是VIP/贵宾

-

威望
0
论坛币
352062 个
通用积分
1618.4995
学术水平
43 点
热心指数
68 点
信用等级
44 点
经验
24554 点
帖子
624
精华
0
在线时间
549 小时
注册时间
2006-9-26
最后登录
2025-12-13

楼主
ccpoo 发表于 2007-3-17 23:31:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

一本必备的工具书,第一卷 (Wiley出版社)

An Introduction to Probability Theory and Its Applications, Volume 1, 3rd Edition
Contents:
Introduction: The Nature of Probability Theory.

The Sample Space.

Elements of Combinatorial Analysis.

Fluctuations in Coin Tossing and Random Walks.

Combination of Events.

Conditional Probability.

Stochastic Independence.

The Binomial and Poisson Distributions.

The Normal Approximation to the Binomial Distribution.

Unlimited Sequences of Bernoulli Trials.

Random Variables; Expectation.

Laws of Large Numbers.

Integral Valued Variables.

Generating Functions.

Compound Distributions.

Branching Processes.

Recurrent Events.

Renewal Theory.

Random Walk and Ruin Problems.

Markov Chains.

Algebraic Treatment of Finite Markov Chains.

The Simplest Time-Dependent Stochastic Processes.

Answers to Problems.

100071.pdf (30.24 MB, 需要: 20 个论坛币)

[此贴子已经被作者于2007-3-17 23:34:38编辑过]

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:introduction Applications Probability Application troduction Theory Applications Probability introduction volume

沙发
mxgu(真实交易用户) 发表于 2007-3-18 05:21:00

如此好书,焉有不顶的道理

=============================== Second Life

藤椅
quanwx(真实交易用户) 发表于 2007-3-22 11:51:00

有没有下面这本书啊?

An Introduction to Probability Theory and Its Applications, Volume 2

  • Paperback: 704 pages

  • Publisher: John Wiley & Sons, Inc.; 2 edition (January 1, 2001)
  • Language: English
  • ISBN-10: 0471257095
  • ISBN-13: 978-0471257097
  • 板凳
    ccpoo(未真实交易用户) 发表于 2007-3-22 13:21:00
    以下是引用quanwx在2007-3-22 11:51:00的发言:

    有没有下面这本书啊?

    An Introduction to Probability Theory and Its Applications, Volume 2

  • Paperback: 704 pages

  • Publisher: John Wiley & Sons, Inc.; 2 edition (January 1, 2001)
  • Language: English
  • ISBN-10: 0471257095
  • ISBN-13: 978-0471257097
  • 有的,本想过阵子再传上来,前阵子传的书太多了,有些被删了,有些被隐藏了。

    报纸
    whiteice(未真实交易用户) 发表于 2007-3-22 18:11:00
    这套书不错,顶一下!
    人在尘世间,心在三界外;若无纷繁事,何羡天上仙。

    地板
    bookbug(真实交易用户) 发表于 2007-3-22 22:53:00
    全套列个目录吧

    7
    ccpoo(未真实交易用户) 发表于 2007-3-23 01:39:00
    以下是引用bookbug在2007-3-22 22:53:00的发言:
    全套列个目录吧

    卷1、卷2都已上传到版上。

    内容:

    Vol.1

    Introduction: The Nature of Probability Theory.

    The Sample Space.

    Elements of Combinatorial Analysis.

    Fluctuations in Coin Tossing and Random Walks.

    Combination of Events.

    Conditional Probability.

    Stochastic Independence.

    The Binomial and Poisson Distributions.

    The Normal Approximation to the Binomial Distribution.

    Unlimited Sequences of Bernoulli Trials.

    Random Variables; Expectation.

    Laws of Large Numbers.

    Integral Valued Variables.

    Generating Functions.

    Compound Distributions.

    Branching Processes.

    Recurrent Events.

    Renewal Theory.

    Random Walk and Ruin Problems.

    Markov Chains.

    Algebraic Treatment of Finite Markov Chains.

    The Simplest Time-Dependent Stochastic Processes.

    Answers to Problems.

    Vol.2

    1. Introduction

    2. Densities. Convolutions

    3. The Exponential Density

    4. Waiting Time Paradoxes. The Poisson Process

    5. The Persistence of Bad Luck

    6. Waiting Times and Order Statistics

    7. The Uniform Distribution

    8. Random Splittings

    9. Convolutions and Covering Theorems

    10. Random Directions

    11. The Use of Lebesgue Measure

    12. Empirical Distributions

    13. Problems for Solution

    Chapter II Special Densities. Randomization

    1. Notations and Conventions

    2. Gamma Distributions

    3. Related Distributions of Statistics

    4. Some Common Densities

    5. Randomization and Mixtures

    6. Discrete Distributions

    7. Bessel Functions and Random Walks

    8. Distributions on a Circle

    9. Problems for Solution

    Chapter III Densities in Higher Dimensions. Normal Densities and Processes

    1. Densities

    2. Conditional Distributions

    3. Return to the Exponential and the Uniform Distributions

    4. A Characterization of the Normal Distribution

    5. Matrix Notation. The Covariance Matrix

    6. Normal Densities and Distributions

    7. Stationary Normal Processes

    8. Markovian Normal Densities

    9. Problems for Solution

    Chapter IV Probability Measures and Spaces

    1. Baire Functions

    2. Interval Functions and Integrals in Rr

    3. σ-Algebras. Measurability

    4. Probability Spaces. Random Variables

    5. The Extension Theorem

    6. Product Spaces. Sequences of Independent Variables

    7. Null Sets. Completion

    Chapter V Probability Distributions in Rr

    1. Distributions and Expectations

    2. Preliminaries

    3. Densities

    4. Convolutions

    5. Symmetrization

    6. Integration by Parts. Existence of Moments

    7. Chebyshev’s Inequality

    8. Further Inequalities. Convex Functions

    9. Simple Conditional Distributions. Mixtures

    10. Conditional Distributions

    11. Conditional Expectations

    12. Problems for Solution

    Chapter VI A Survey of Some Important Distributions and Processes

    1. Stable Distributions in R1

    2. Examples

    3. Infinitely Divisible Distributions in R1

    4. Processes with Independent Increments

    5. Ruin Problems in Compound Poisson Processes

    6. Renewal Processes

    7. Examples and Problems

    8. Random Walks

    9. The Queuing Process

    10. Persistent and Transient Random Walks

    11. General Markov Chains

    12. Martingales

    13. Problems for Solution

    Chapter VII Laws of Large Numbers. Applications in Analysis

    1. Main Lemma and Notations

    2. Bernstein Polynomials. Absolutely Monotone Functions

    3. Moment Problems

    4. Application to Exchangeable Variables

    5. Generalized Taylor Formula and Semi-Groups

    6. Inversion Formulas for Laplace Transforms

    7. Laws of Large Numbers for Identically Distributed Variables

    8. Strong Laws

    9. Generalization to Martingales

    10. Problems for Solution

    Chapter VIII The Basic Limit Theorems

    1. Convergence of Measures

    2. Special Properties

    3. Distributions as Operators

    4. The Central Limit Theorem

    5. Infinite Convolutions

    6. Selection Theorems

    7. Ergodic Theorems for Markov Chains

    8. Regular Variation

    9. Asymptotic Properties of Regularly Varying Functions

    10. Problems for Solution

    Chapter IX Infinitely Divisible Distributions and Semi-Groups

    1. Orientation

    2. Convolution Semi-Groups

    3. Preparatory Lemmas

    4. Finite Variances

    5. The Main Theorems

    6. Example: Stable Semi-Groups

    7. Triangular Arrays with Identical Distributions

    8. Domains of Attraction

    9. Variable Distributions. The Three-Series Theorem

    10. Problems for Solution

    Chapter X Markov Processes and Semi-Groups

    1. The Pseudo-Poisson Type

    2. A Variant: Linear Increments

    3. Jump Processes

    4. Diffusion Processes in R1

    5. The Forward Equation. Boundary Conditions

    6. Diffusion in Higher Dimensions

    7. Subordinated Processes

    8. Markov Processes and Semi-Groups

    9. The "Exponential Formula" of Semi-Group Theory

    10. Generators. The Backward Equation

    Chapter XI Renewal Theory

    1. The Renewal Theorem

    2. Proof of the Renewal Theorem

    3. Refinements

    4. Persistent Renewal Processes

    5. The Number Nt of Renewal Epochs

    6. Terminating (Transient) Processes

    7. Diverse Applications

    8. Existence of Limits in Stochastic Processes

    9. Renewal Theory on the Whole Line

    10. Problems for Solution

    Chapter XII Random Walks in R1

    1. Basic Concepts and Notations

    2. Duality. Types of Random Walks

    3. Distribution of Ladder Heights. Wiener-Hopf Factorization

    3a. The Wiener-Hopf Integral Equation

    4. Examples

    5. Applications

    6. A Combinatorial Lemma

    7. Distribution of Ladder Epochs

    8. The Arc Sine Laws

    9. Miscellaneous Complements

    10. Problems for Solution

    Chapter XIII Laplace Transforms. Tauberian Theorems. Resolvents

    1. Definitions. The Continuity Theorem

    2. Elementary Properties

    3. Examples

    4. Completely Monotone Functions. Inversion Formulas

    5. Tauberian Theorems

    6. Stable Distributions

    7. Infinitely Divisible Distributions

    8. Higher Dimensions

    9. Laplace Transforms for Semi-Groups

    10. The Hille-Yosida Theorem

    11. Problems for Solution

    Chapter XIV Applications of Laplace Transforms

    1. The Renewal Equation: Theory

    2. Renewal-Type Equations: Examples

    3. Limit Theorems Involving Arc Sine Distributions

    4. Busy Periods and Related Branching Processes

    5. Diffusion Processes

    6. Birth-and-Death Processes and Random Walks

    7. The Kolmogorov Differential Equations

    8. Example: The Pure Birth Process

    9. Calculation of Ergodic Limits and of First-Passage Times

    10. Problems for Solution

    Chapter XV Characteristic Functions

    1. Definition. Basic Properties

    2. Special Distributions. Mixtures

    2a. Some Unexpected Phenomena

    3. Uniqueness. Inversion Formulas

    4. Regularity Properties

    5. The Central Limit Theorem for Equal Components

    6. The Lindeberg Conditions

    7. Characteristic Functions in Higher Dimensions

    8. Two Characterizations of the Normal Distribution

    9. Problems for Solution

    Chapter XVI Expansions Related to the Central Limit Theorem,

    1. Notations

    2. Expansions for Densities

    3. Smoothing

    4. Expansions for Distributions

    5. The Berry-Esséen Theorems

    6. Expansions in the Case of Varying Components

    7. Large Deviations

    Chapter XVII Infinitely Divisible Distributions

    1. Infinitely Divisible Distributions

    2. Canonical Forms. The Main Limit Theorem

    2a. Derivatives of Characteristic Functions

    3. Examples and Special Properties

    4. Special Properties

    5. Stable Distributions and Their Domains of Attraction

    6. Stable Densities

    7. Triangular Arrays

    8. The Class L

    9. Partial Attraction. "Universal Laws"

    10. Infinite Convolutions

    11. Higher Dimensions

    12. Problems for Solution 595

    Chapter XVIII Applications of Fourier Methods to Random Walks

    1. The Basic Identity

    2. Finite Intervals. Wald’s Approximation

    3. The Wiener-Hopf Factorization

    4. Implications and Applications

    5. Two Deeper Theorems

    6. Criteria for Persistency

    7. Problems for Solution

    Chapter XIX Harmonic Analysis

    1. The Parseval Relation

    2. Positive Definite Functions

    3. Stationary Processes

    4. Fourier Series

    5. The Poisson Summation Formula

    6. Positive Definite Sequences

    7. L2 Theory

    8. Stochastic Processes and Integrals

    9. Problems for Solution

    Answers to Problems

    Some Books on Cognate Subjects

    Index

    8
    u0307999(未真实交易用户) 发表于 2007-5-9 10:03:00

    let me see

    9
    u0307999(未真实交易用户) 发表于 2007-5-9 10:04:00

    why?

    10
    sdaydreamers(未真实交易用户) 发表于 2007-11-15 05:24:00

    我也想要feller2卷,其实有很多好书,可惜都是老版的……这个是电子版的么

    看不到链接……

    您需要登录后才可以回帖 登录 | 我要注册

    本版微信群
    加好友,备注jltj
    拉您入交流群
    GMT+8, 2026-1-1 22:49