楼主: sxzhangzsx
1011 1

look for help dZ=ZdW [推广有奖]

  • 1关注
  • 0粉丝

已卖:458份资源

硕士生

57%

还不是VIP/贵宾

-

威望
0
论坛币
2856 个
通用积分
0
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
796 点
帖子
125
精华
0
在线时间
161 小时
注册时间
2008-5-19
最后登录
2021-10-18

楼主
sxzhangzsx 发表于 2012-10-4 05:08:49 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Look for help, It is about stochastic calculus.
Could I use (1/Z dZ=dW), then integral both side to solve it.
Then finally get, Ln(Z)=W+c
Thank you very much.

Could someone tell me the specific steps?

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:R help Help Look elp For specific someone about

沙发
Chemist_MZ 在职认证  发表于 2012-10-4 06:24:41
Unfortunately you can't.

Remember, whenever you see the differential form of stochastic integral, it is actually not a differential. It is only an abbreviation of the integral. dw,dz has no mathematical meaning unless they appear with ∫.

So dz=zdw actually means ∫dz=∫zdw, if you move z down to the left it actually means ∫dz/z=∫dw.

These two things are surely not equivalent. Even under Riemann integral you can't do that, because z is a function of w and time t perhaps. So how can we solve it?

let y=ln(z), apply Ito formula to y leads to dy=1/z*dz-0.5*1/z^2*(dz)^2 (even this form is not formal because always remember it is an integral, and (dz)^2 is actually mathematically incorrect) but that doesn't bother us. You just take it as a mathematical sign and abbreviation.

so put dz=zdw into it gives: dy=dw-0.5*dt, take integral on both sides(from 0 to t) gives
y(t)-y(0)=w(t)-0.5t. substitute y with ln(z) gives ln(z(t))=ln(z(0))+w(t)-0.5t.

You know, brownian motion is not a "smooth" function. Besides the ordinary Riemann part, there is a part for quadratic variation(-0.5t).

The normal process of solving this kind of problem is to guess a proper function for z, like f(z) and then apply Ito formula.

Remember,in stochastic calculus whenever you move something for one side of the equation to the other, you must be very careful!
Hope help~
已有 1 人评分学术水平 热心指数 信用等级 收起 理由
sxzhangzsx + 1 + 1 + 1 热心帮助其他会员,Thank you a lot, I get .

总评分: 学术水平 + 1  热心指数 + 1  信用等级 + 1   查看全部评分

扫头像关注公众号“二点三西格玛”衍生品定价与风险管理

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jr
拉您进交流群
GMT+8, 2026-1-1 04:15