两类反应扩散系统解集的全局结构
本文研究反应扩散系统即抛物型偏微分方程系统,其中包括一个或多个参数。本文的目的是应用分析和数值模拟的方法找出连接分支点和奇异摄动解的非平凡稳态解的分支。
本文不仅对解的存在性感兴趣,更致力于稳态解附近的线性算子的谱性质以便于更好的理解解的全局结构。“全局结构”是指稳态解的数量和它们的稳定性/不稳定性对参数的依赖性。
对于许多反应扩散系统,稳定或不稳定的分支解或奇异摄动解是已知的。然而这些结果是有局限性的,即存在性和稳定性的结果仅在参数在一个小范围内或稳态解的小邻域内成立。
在实践中,现实的参数值往往不在这些范围内。因此对于在分支点和奇异摄动解之间的参数值的研究是非常重要的。
本文的主要内容如下:1.对于具有Turing不稳定性和迟滞性的Marciniak-Czochra模型即一类半线性抛物型方程和常微分方程耦合的系统进行深入的研究。在不同的参数值条件下研究Marciniak-Czochra模型的恒稳态解的存在性并且通过严格的运算寻找该模型的恒稳态解。
在一个抽象的设定下研究线性算子的谱性质。在恒稳态附近,应用分支理论探讨具有空间异质性的稳态解。
更进一步 ...


雷达卡




京公网安备 11010802022788号







