楼主: 打了个飞的
59 0

[学习资料] 两类反应扩散系统解集的全局结构 [推广有奖]

  • 0关注
  • 25粉丝

已卖:7233份资源
好评率:99%
商家信誉:一般

院士

98%

还不是VIP/贵宾

-

威望
0
论坛币
3465 个
通用积分
4711.2119
学术水平
8 点
热心指数
9 点
信用等级
8 点
经验
18726 点
帖子
2182
精华
0
在线时间
1384 小时
注册时间
2024-5-25
最后登录
2025-12-23

楼主
打了个飞的 在职认证  发表于 2025-9-14 15:50:39 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
两类反应扩散系统解集的全局结构
本文研究反应扩散系统即抛物型偏微分方程系统,其中包括一个或多个参数。本文的目的是应用分析和数值模拟的方法找出连接分支点和奇异摄动解的非平凡稳态解的分支。
本文不仅对解的存在性感兴趣,更致力于稳态解附近的线性算子的谱性质以便于更好的理解解的全局结构。“全局结构”是指稳态解的数量和它们的稳定性/不稳定性对参数的依赖性。
对于许多反应扩散系统,稳定或不稳定的分支解或奇异摄动解是已知的。然而这些结果是有局限性的,即存在性和稳定性的结果仅在参数在一个小范围内或稳态解的小邻域内成立。
在实践中,现实的参数值往往不在这些范围内。因此对于在分支点和奇异摄动解之间的参数值的研究是非常重要的。
本文的主要内容如下:1.对于具有Turing不稳定性和迟滞性的Marciniak-Czochra模型即一类半线性抛物型方程和常微分方程耦合的系统进行深入的研究。在不同的参数值条件下研究Marciniak-Czochra模型的恒稳态解的存在性并且通过严格的运算寻找该模型的恒稳态解。
在一个抽象的设定下研究线性算子的谱性质。在恒稳态附近,应用分支理论探讨具有空间异质性的稳态解。
更进一步 ...
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Turing 常微分方程 空间异质性 偏微分方程 Marc

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-24 04:23