楼主: SleepyTom
1287 20

[教材书籍] Probability and Bayesian Modeling By Jim Albert, Jingchen Hu [推广有奖]

  • 3关注
  • 12粉丝

已卖:14024份资源
好评率:99%
商家信誉:极好

教授

40%

还不是VIP/贵宾

-

威望
0
论坛币
196299 个
通用积分
1933.8190
学术水平
139 点
热心指数
186 点
信用等级
159 点
经验
6034 点
帖子
831
精华
0
在线时间
472 小时
注册时间
2007-5-8
最后登录
2026-2-12

楼主
SleepyTom 发表于 2025-9-28 04:44:27 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
附件为压缩文件,内中包含本书PDF文档、习题答案、以及代码

Probability and Bayesian Modeling
  
By Jim Albert, Jingchen Hu

ISBN 9781138492561
552 Pages
Published December 18, 2019

Probability and Bayesian Modeling is an introduction to probability and Bayesian thinking for undergraduate students with a calculus background. The first part of the book provides a broad view of probability including foundations, conditional probability, discrete and continuous distributions, and joint distributions. Statistical inference is presented completely from a Bayesian perspective. The text introduces inference and prediction for a single proportion and a single mean from Normal sampling. After fundamentals of Markov Chain Monte Carlo algorithms are introduced, Bayesian inference is described for hierarchical and regression models including logistic regression. The book presents several case studies motivated by some historical Bayesian studies and the authors’ research. This text reflects modern Bayesian statistical practice. Simulation is introduced in all the probability chapters and extensively used in the Bayesian material to simulate from the posterior and predictive distributions. One chapter describes the basic tenets of Metropolis and Gibbs sampling algorithms; however several chapters introduce the fundamentals of Bayesian inference for conjugate priors to deepen understanding. Strategies for constructing prior distributions are described in situations when one has substantial prior information and for cases where one has weak prior knowledge. One chapter introduces hierarchical Bayesian modeling as a practical way of combining data from different groups. There is an extensive discussion of Bayesian regression models including the construction of informative priors, inference about functions of the parameters of interest, prediction, and model selection. The text uses JAGS (Just Another Gibbs Sampler) as a general-purpose computational method for simulating from posterior distributions for a variety of Bayesian models. An R package ProbBayes is available containing all of the book datasets and special functions for illustrating concepts from the book.

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Probability bability Bayesian Modeling Ability

已有 3 人评分经验 收起 理由
xujingtang + 100 精彩帖子
wwqqer + 100 精彩帖子
cheetahfly + 100 精彩帖子

总评分: 经验 + 300   查看全部评分

本帖被以下文库推荐

沙发
babylaugh(未真实交易用户) 发表于 2025-9-28 09:48:35
点赞分享

藤椅
babylaugh(未真实交易用户) 发表于 2025-9-28 09:49:14
支持一下

板凳
cre8(未真实交易用户) 发表于 2025-9-28 14:32:49
点赞分享 !

报纸
qchangcheng(真实交易用户) 在职认证  发表于 2025-9-28 15:09:13

地板
yiyijiayuan(未真实交易用户) 在职认证  发表于 2025-9-28 15:22:23
友情回复。

7
晏几道(未真实交易用户) 发表于 2025-9-28 15:42:38
好东西

8
512661101(未真实交易用户) 发表于 2025-9-28 19:46:43

9
Edwardu(真实交易用户) 发表于 2025-9-28 21:10:34
谢谢分享

10
luojscd(真实交易用户) 发表于 2025-9-28 21:26:59
点赞分享!谢谢!

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-2-17 07:03