楼主: wz151400
57 0

[其他] 【最新英文量化金融资料】Quantitative Finance An Introduction to Investments [推广有奖]

已卖:13512份资源
好评率:99%
商家信誉:良好

泰斗

74%

还不是VIP/贵宾

-

TA的文库  其他...

百味图书

威望
0
论坛币
433 个
通用积分
2458.8478
学术水平
177 点
热心指数
208 点
信用等级
105 点
经验
10341 点
帖子
23613
精华
0
在线时间
14000 小时
注册时间
2016-2-10
最后登录
2026-2-20

楼主
wz151400 在职认证  发表于 2026-2-17 13:55:28 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Quantitative Finance An Introduction to Investments, Asset Pricing, and Derivatives.epub (26.05 MB, 需要: RMB 19 元)
2025最新资料。
520多页内容丰富的资料!
epub格式文件,全部矢量文字,方便翻译学习!
Quantitative Finance An Introduction to Investments, Asset Pricing, and Derivatives
1Introduction     1
1.1Teaching Using This Book     3
1.2On the Book’s Origins and Approach     5
PART I: Investments and Asset Pricing     7
2Financial Markets     9
2.1Assets and Returns     10
2.2Measuring Returns     11
2.3Bonds and Yields     14
2.4Historical Returns and Important Questions     15
3Making Decisions under Uncertainty     18
3.1Lotteries     20
3.2Expected Utility     23
3.2.1Axiomatic Derivation     23
3.3State Spaces     28
3.4Quantifying Risk Aversion     29
3.5Subjective Expected Utility Theory     33
3.6Ambiguity Aversion     33
3.7Behavioral Economics and Decision-Making     34
3.8Introducing a Time Dimension     35
3.9Epstein–Zin Preferences     36
3.10Defining Increased Riskiness     39
3.11Exercises     46
4Choosing an Investment Portfolio     49
4.1Introduction     49
4.2Multiple Risky Assets     57
4.3General Problem     60
4.4Modern Portfolio Theory     62
4.4.1Restrictions on Risk Distributions     71
4.4.2Hedging Portfolio     72
4.4.3The Power of Diversification     73
4.5Including Consumption at t = 0     74
4.6The Challenge of Estimating Expected Returns     76
4.7Dynamic Portfolio Choice     79
4.7.1Growth Optimal Portfolios     84
4.7.2Universal Portfolios     87
4.8Exercises     91
5Determining the Prices of Assets     95
5.1Equilibrium Pricing     95
5.2Capital Asset Pricing Model, CAPM     98
5.2.1CARA-Normal CAPM Model     100
5.2.2CAPM via a Regression     107
5.2.3CAPM with Unknown Market Portfolio     107
5.3Black–Litterman Model     108
5.4Consumption-Based Models     112
5.4.1Arrow–Debreu Model     113
5.4.2Efficiency     121
5.4.3Equilibrium Stochastic Discount Factor     123
5.4.4Equity Premium Puzzle     124
5.4.5HARA Utility and Habit Formation     126
5.4.6Rare Disasters     128
5.4.7Incomplete Markets     129
5.4.8Epstein–Zin Preferences     132
5.4.9Lucas Model     134
5.4.10Existence of Equilibrium in the Lucas Model     137
5.4.11More on Consumption-Based Asset Pricing     143
5.4.12EZ Preferences and the Equity Premium Puzzle     144
5.5Arbitrage Pricing Theory, APT     148
5.5.1One-Factor Model without Idiosyncratic Risk     149
5.5.2Two-Factor Model without Idiosyncratic Risk     150
5.5.3Factor Pricing with Idiosyncratic Risk     151
5.6Exercises     156
PART II: No-Arbitrage Pricing and Derivatives     161
6Introduction to No-Arbitrage Pricing     163
7One-Period Model     165
7.1Preliminary Notation     165
7.2Capital Markets     166
7.3Modeling the Market     167
7.4The Fundamental Theorems     174
7.4.1The First Fundamental Theorem     174
7.4.2The Second Fundamental Theorem     178
7.4.3The Law of One Price, LOOP     179
7.4.4Discussion and Examples     179
7.5Probability Theory I     181
7.6Risk-Neutral Pricing and the Stochastic Discount Factor     182
7.7More on Derivative Contracts     184
7.8Price Bounds in Incomplete Markets     188
7.9Exercises     193
8Multiperiod Model     197
8.1An Example with Two Periods     198
8.2Probability Theory II     200
8.3More Probability Theory and Stochastic Processes     205
8.3.1Sigma-Algebras     206
8.3.2Stochastic Processes     207
8.4Information Refinement over Time     207
8.5General Multiperiod Model     208
8.6Multiperiod Fundamental Theorems     212
8.7Limit of the Binomial Model     213
8.8Exercises     219
9Continuous-Time Model     223
9.1Brownian Motion     223
9.2Stochastic Integrals     228
9.2.1Classical Calculus     228
9.2.2Portfolio Investing in Continuous Time     229
9.2.3Riemann–Stieltjes Integral     229
9.2.4Integral of a Wiggly Function     232
9.2.5The Itô Integral     236
9.2.6A Deterministic Example     237
9.2.7Differential Formulas     241
9.2.8Itô’s Lemma     241
9.3Continuous-Time Portfolios     244
9.4ODEs, SDEs, and PDEs     245
9.4.1A Primer on Ordinary Differential Equations (ODEs)     245
9.4.2Stochastic Differential Equations (SDEs)     249
9.4.3Partial Differential Equations (PDEs)     251
9.4.4Feynman–Kac’s Theorem and the Kolmogorov Equations     255
9.5No-Arbitrage Pricing in Continuous Time     259
9.5.1Black–Scholes’ PDE and Formula     259
9.5.2Proving the Black–Scholes PDE Formula     262
9.5.3Risk-Neutral Formulation     265
9.5.4Varying Volatility and Interest Rates     267
9.6Girsanov’s Theorem     267
9.6.1An Insightful Example     270
9.7Exercises     275
10Applications     279
10.1Dividends     279
10.2Barrier Options     281
10.3Bond Pricing in Continuous Time     284
10.3.1A Generalized Example     291
10.3.2Example—Vasicek Model     292
10.3.3Example—Cox–Ingersoll–Ross (CIR) Model     293
10.4Multidimensional Black–Scholes     294
10.4.1Exchange Option Example     295
10.5Change of Numeraire     297
10.6Forward and Futures Contracts in Continuous Time     299
10.7Exercises     302
11Numerical Methods     306
11.1Binomial Tree Method     310
11.1.1A Two-Dimensional Problem     312
11.2Finite Difference Method for ODEs     314
11.3Finite Difference Method for the Black–Scholes Equation     316
11.3.1More on Stability     320
11.4Monte Carlo Method     323
PART III: Advanced Topics     327
12Portfolio Choice and Equilibrium in Continuous Time     329
12.1Portfolio Choice in Continuous Time     329
12.1.1Varying Investment Opportunity Set     334
12.1.2Solution with Intermediate Consumption     341
12.2Intertemporal Capital Asset Pricing Model, ICAPM     345
12.3Continuous-Time Lucas Model     349
12.4Economies with Production     353
12.4.1Extending the One-Tree Model to Include Production     353
12.4.2Cox–Ingersoll–Ross (CIR) Economy     358
13More Derivative Pricing     362
13.1Constant Elasticity of Variance (CEV) Model     362
13.2Jumps     364
13.3Further Classification of Processes and Distributions     370
13.4Stochastic Volatility     374
13.4.1Fourier Transform and Fourier Methods     377
13.4.2Solving the Stochastic Volatility Problem     379
13.5Variance Gamma Model     381
13.6Volatility Index, VIX     385
14Recovery Theorem     389
14.1The Ross Recovery Model     391
14.2Recovery for Diffusion Processes     395
14.3Error Bounds under Bounded Observations     402
14.4Misspecified Recovery     404
15Information and Disagreement     407
15.1Agreeing to Disagree     408
15.2Noisy Rational Expectations Equilibrium (NREE) Models     418
15.3Strategic Investors     421
Acknowledgments     427
Appendix A: Sets and Functions     429
A.1Sets     429
A.2Functions     431
Appendix B: Topology and Linear Algebra     432
B.1Metric Spaces     432
B.2Vector Spaces     433
B.3Vectors and Matrices     436
B.4Linear Algebra     438
B.5Stochastic Matrices     440
Appendix C: Real Analysis     443
C.1Limits of Sequences and Series     443
C.2Continuity     444
C.3Derivatives and Taylor Expansions     445
C.4Multivariate Calculus     446
C.5Optimization     448
Appendix D: Lebesgue–Stieltjes Integral     450
Appendix E: MATLAB Code     453
Bibliography     455…………………………………………………………

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Quantitative introduction QUANTITATIV investments troduction

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-2-20 23:43