楼主: zhushiyou
1931 1

[宏观经济指标] Generalized Analytic Automorphic Forms in Hypercomplex Spaces [推广有奖]

  • 0关注
  • 11粉丝

教授VIP

已卖:12756份资源

学科带头人

36%

还不是VIP/贵宾

-

威望
0
论坛币
849958 个
通用积分
193.9896
学术水平
27 点
热心指数
34 点
信用等级
18 点
经验
24352 点
帖子
1109
精华
3
在线时间
716 小时
注册时间
2006-8-5
最后登录
2018-1-26

楼主
zhushiyou 发表于 2007-6-21 13:38:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
128219.pdf (1.39 MB, 需要: 30 个论坛币) <BR>_orig<IMG src="http://pixhost.eu/avaxhome/avaxhome/2007-06-20/41sVFxtussL_345.jpg"></A><BR>
<DIV class=center><B>Rolf S. Krausshar, Generalized Analytic Automorphic Forms in Hypercomplex Spaces </B><BR>Birkhauser | ISBN: 3764370599 | (May 27, 200)| 167 pages | PDF | 1.4 MB</DIV><BR>
<DIV class=justify>
<TABLE>

<TR>
<TD class=quote_left>“</TD>
<TD class=quote_center>This book describes the basic theory of hypercomplex-analytic automorphic forms and functions for arithmetic subgroups of the Vahlen group in higher dimensional spaces. Hypercomplex analyticity generalizes the concept of complex analyticity in the sense of considering null-solutions to higher dimensional Cauchy-Riemann type systems. Vector- and Clifford algebra-valued Eisenstein and Poincaré series are constructed within this framework and a detailed description of their analytic and number theoretical properties is provided. In particular, explicit relationships to generalized variants of the Riemann zeta function and Dirichlet L-series are established and a concept of hypercomplex multiplication of lattices is introduced. Applications to the theory of Hilbert spaces with reproducing kernels, to partial differential equations and index theory on some conformal manifolds are also described.</TD></TR></TABLE></DIV>
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Hypercomplex Automorphic Generalized Generalize Analytic describes complex higher

沙发
wanggang07(未真实交易用户) 发表于 2007-6-21 15:52:00

你太黑了!!!

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-29 12:29