楼主: schwereburg
1852 2

对dS/S = r dt + sigma dz^Q积分 [推广有奖]

  • 1关注
  • 5粉丝

硕士生

51%

还不是VIP/贵宾

-

威望
0
论坛币
133 个
通用积分
0
学术水平
0 点
热心指数
3 点
信用等级
0 点
经验
1401 点
帖子
104
精华
0
在线时间
142 小时
注册时间
2011-12-23
最后登录
2019-12-10

楼主
schwereburg 发表于 2013-4-9 03:49:56 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
lns=rT+sigma*Z
S=exp(rT+sigma*Z)

对吗?心里不是很踏实
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Sigma GMA EXP 积分 sigma

回帖推荐

Chemist_MZ 发表于3楼  查看完整内容

Sofa is correct. You miss the Ito term, which is 0.5*sigma^2 The main point here is that, for common deterministic function, the quadratic variation is zero, since they are so-called "Smooth" function, but for Brown Motion, the quadratic variation is not zero, which means you need to include the second order term when you do the stochastic differentiation. The right way to solve this SDE, ...

本帖被以下文库推荐

沙发
shelf317 发表于 2013-4-9 04:24:42
assuming r and sigma are constant,
the solution should be
S_T = S_0 * exp( (r-1/2 sigma^2)T + sigma * W_T), where W_T is a standard brownian motion.

Check the wiki page on GBM at
http://en.wikipedia.org/wiki/Geometric_Brownian_motion

藤椅
Chemist_MZ 在职认证  发表于 2013-4-9 06:34:24
Sofa is correct.

You miss the Ito term, which is 0.5*sigma^2

The main point here is that, for common deterministic function, the quadratic variation is zero, since they are so-called "Smooth" function, but for Brown Motion, the quadratic variation is not zero, which means you need to include the second order term when you do the stochastic differentiation.

The right way to solve this SDE,is doing transform y=lnS, then apply Ito formula to y with respect to S.

It's done.



已有 1 人评分经验 论坛币 收起 理由
见路不走 + 5 + 5 热心帮助其他会员

总评分: 经验 + 5  论坛币 + 5   查看全部评分

扫头像关注公众号“二点三西格玛”衍生品定价与风险管理

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jr
拉您进交流群
GMT+8, 2025-12-30 06:29