1100 0

[英文文献] Evaluating Value-at-Risk Models with Desk-Level Data-利用桌面级数据评估风险价值模型 [推广有奖]

  • 0关注
  • 0粉丝

等待验证会员

学前班

0%

还不是VIP/贵宾

-

威望
0
论坛币
0 个
通用积分
0
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
10 点
帖子
0
精华
0
在线时间
0 小时
注册时间
2020-9-19
最后登录
2020-9-19

楼主
档案管理学424 发表于 2004-10-19 06:02:55 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
英文文献:Evaluating Value-at-Risk Models with Desk-Level Data-利用桌面级数据评估风险价值模型
英文文献作者:Peter Christoffersen,Jeremy Berkowitz,Denis Pelletier
英文文献摘要:
We present new evidence on disaggregated profit and loss (P/L) and Value-at-Risk (VaR) forecasts obtained from a large international commercial bank. Our dataset includes the actual daily P/L generated by four separate business lines within the bank. All four business lines are involved in securities trading and each is observed daily for a period of at least two years. Given this unique dataset, we provide an integrated, unifying framework for assessing the accuracy of VaR forecasts. We use a comprehensive Monte Carlo study to assess which of these many tests have the best finite-sample size and power properties. Our desk-level data set provides importance guidance for choosing realistic P/L generating processes in the Monte Carlo comparison of the various tests. The CaViaR test of Engle and Manganelli (2004) performs best overall but duration-based tests also perform well in many cases.

我们提出了从一家大型国际商业银行获得的分列损益(P/L)和风险价值(VaR)预测的新证据。我们的数据集包括银行内四个独立业务线生成的实际每日P/L。所有这四种业务都涉及证券交易,每一种业务都必须每天进行观察,为期至少两年。鉴于这个独特的数据集,我们提供了一个集成的,统一的框架,以评估VaR预测的准确性。我们使用一个全面的蒙特卡洛研究来评估这些测试中哪一个有最好的有限样本大小和功率特性。在各种测试的蒙特卡罗比较中,我们的桌面级数据集为选择现实的P/L生成过程提供了重要的指导。Engle和Manganelli(2004)的鱼子酱测试总体上表现最好,但基于时间的测试在许多情况下也表现良好。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝


您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-28 17:36