A colleague of mine showed me another approach, which is another cool way to kill it.
E(A^2) = E(int_0^t u W_u du int_0^t s W_s ds)
= E(int_0^t int_0^t u W_u s W_s du ds) --- now double integral on a square where 0 < u, s < t
we can break the square integral into two triangle integrals, where u > s and s < u, respectively, that is,
E(A^2) = E(int_0^t int_0^s u W_u s W_s du ds) + E(int_0^t int_0^u u W_u s W_s ds du)
= int_0^t int_0^s u s E(W_u W_s) du ds + int_0^t int_0^u u s E(W_u W_s) ds du
= int_0^t int_0^s u s u du ds + int_0^t int_0^u u s s ds du
= int_0^t s int_0^s u^2 du ds + int_0^t u int_0^u s^2 ds du
= int_0^t s s^3/3 ds + int_0^t u u^3/3 ds
= t^5/15 + t^5/15
= 2 t^5/15
Similar to
xuruilong100' approach in a way