A(t) = int_0^t s W_s ds, where W_t is the standard Brownian motion
Apparently, E[A(t)] = 0
then, what is Var[A(t)], or E[A^2(t)]?
Thank you
|
楼主: shelf317
|
3199
14
[其他] stochastic integration: int_0^t s W_s ds |
|
已卖:592份资源 讲师 1%
-
|
回帖推荐Chemist_MZ 发表于7楼 查看完整内容 I am sorry that I did something wrong, since there is some very complicated issue when change the order of the Ito integral with a Riemann integral. I am so lazy that I try to find some short cut :-)
So now some "standard" way to solve this problem. Of course it is Ito Lemma
Consider 1/2*s^2*w(s)
applying Ito lemma:
d(1/2*s^2*w(s))=1/2*s^2*dw(s)+s*w(s)ds (the second order term is zer ...
xuruilong100 发表于10楼 查看完整内容 another approach to solve it
A^2 = 2int_0^t A_s dA
= 2int_0^t A_s s W_s ds
= 2int_0^t (int_0^s r W_r dr) s W_s ds
= 2int_0^t int_0^s rW_r sW_s drds(关于r和s的双重积分)
计算E(A^2)时利用积分交换,计算E(rW_r sW_s) = r^2 * s
剩下的就是简单的双重积分
2int_0^t int_0^s r^2*s drds
=2/15*t^5
| ||
|
|
| ||
|
As we all know, fBm cannot be used in finance, because it produces arbitrage.Therefore, fBm in finance is forb
|
||
| ||
|
扫头像关注公众号“二点三西格玛”衍生品定价与风险管理
|
||
|
As we all know, fBm cannot be used in finance, because it produces arbitrage.Therefore, fBm in finance is forb
|
|
| ||
|
扫头像关注公众号“二点三西格玛”衍生品定价与风险管理
|
||
| ||||||||||||||||
加好友,备注jr京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明


