楼主: shelf317
3199 14

[其他] stochastic integration: int_0^t s W_s ds [推广有奖]

  • 0关注
  • 2粉丝

已卖:592份资源

讲师

1%

还不是VIP/贵宾

-

威望
0
论坛币
3025 个
通用积分
2.8627
学术水平
3 点
热心指数
4 点
信用等级
2 点
经验
2094 点
帖子
437
精华
0
在线时间
314 小时
注册时间
2012-8-31
最后登录
2016-3-1

楼主
shelf317 发表于 2013-8-25 07:39:40 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
A(t) = int_0^t s W_s ds, where W_t is the standard Brownian motion

Apparently, E[A(t)] = 0
then, what is  Var[A(t)], or E[A^2(t)]?

Thank you


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Integration Stochastic Stochast ration ATION standard Thank where

回帖推荐

Chemist_MZ 发表于7楼  查看完整内容

I am sorry that I did something wrong, since there is some very complicated issue when change the order of the Ito integral with a Riemann integral. I am so lazy that I try to find some short cut :-) So now some "standard" way to solve this problem. Of course it is Ito Lemma Consider 1/2*s^2*w(s) applying Ito lemma: d(1/2*s^2*w(s))=1/2*s^2*dw(s)+s*w(s)ds (the second order term is zer ...

xuruilong100 发表于10楼  查看完整内容

another approach to solve it A^2 = 2int_0^t A_s dA = 2int_0^t A_s s W_s ds = 2int_0^t (int_0^s r W_r dr) s W_s ds = 2int_0^t int_0^s rW_r sW_s drds(关于r和s的双重积分) 计算E(A^2)时利用积分交换,计算E(rW_r sW_s) = r^2 * s 剩下的就是简单的双重积分 2int_0^t int_0^s r^2*s drds =2/15*t^5

本帖被以下文库推荐

沙发
gyqznufe 发表于 2013-8-25 08:25:37
知常容·容乃公·公乃王!
创新源于学、问、思、行、果!
言传身教,请用事实与数据说话!
舍而得之:福、禄、寿、喜、财

藤椅
weilinhy 发表于 2013-8-25 08:36:34
t^4/4
As we all know, fBm cannot be used in finance, because it produces arbitrage.Therefore, fBm in finance is forb

板凳
Chemist_MZ 在职认证  发表于 2013-8-25 08:49:52
you can rewrite A(t) as a double integral:

A(t)=∫(0 to t)s ∫(0 to s)1 dWds

exchange the order of integral, and use Ito isometry. You can get E(A^2)

best,


扫头像关注公众号“二点三西格玛”衍生品定价与风险管理

报纸
shelf317 发表于 2013-8-25 08:52:40
weilinhy 发表于 2013-8-25 08:36
t^4/4
can you elaborate on your solution?
Thank you for your help!

地板
weilinhy 发表于 2013-8-25 10:34:03
shelf317 发表于 2013-8-25 08:52
can you elaborate on your solution?
Thank you for your help!
see
As we all know, fBm cannot be used in finance, because it produces arbitrage.Therefore, fBm in finance is forb

7
Chemist_MZ 在职认证  发表于 2013-8-25 11:32:56
shelf317 发表于 2013-8-25 08:52
can you elaborate on your solution?
Thank you for your help!
I am sorry that I did something wrong, since there is some very complicated issue when change the order of the Ito integral with a Riemann integral. I am so lazy that I try to find some short cut :-)

So now some "standard" way to solve this problem. Of course it is Ito Lemma

Consider 1/2*s^2*w(s)

applying Ito lemma:

d(1/2*s^2*w(s))=1/2*s^2*dw(s)+s*w(s)ds (the second order term is zero)

taking integral from 0 to t at both sides.

∫(0 to t)d(1/2*s^2*w(s))=∫(0 to t)1/2*s^2*dw(s)+∫(0 to t)s*w(s)ds

∫(0 to t)s*w(s)ds which is A(t) is thus equal to:

A(t)=∫(0 to t)d(1/2*s^2*w(s))-∫(0 to t)1/2*s^2*dw(s)

=1/2*t^2*w(t)-∫(0 to t)1/2*s^2*dw(s)

set 1/2*t^2*w(t)=x and ∫(0 to t)1/2*s^2*dw(s)=y

so now it comes to find the variance of A(t)

the variance of A(t) is equal to var(x)+var(y)-2cov(x,y), since x, y are overlapped on 0 to t, they are correlated.

var(x)=1/4*t^4*var(w(t))=1/4*t^5

var(y)=∫(0 to t)1/4*s^4*ds=1/20*t^5 (Ito isometry as mentioned by the floor above)

cov(x,y)=E(xy) (since E(x)=0 and E(y)=0)

we can rewrite x into: ∫(0 to t)1/2*t^2*dw(s)=x

so that cov(x,y) is equal to E(∫(0 to t)1/2*t^2*dw(s)∫(0 to t)1/2*s^2*dw(s))

again applying Ito isometry:

cov(x,y)=E(1/4*t^2*∫(0 to t)*s^2*ds)=1/12*t^5

so var(A(t))=1/4*t^5+1/20*t^5-2*1/12*t^5=2/15*t^5

It should be correct since I test the result via simulation with matlab.

best,




已有 1 人评分经验 论坛币 收起 理由
见路不走 + 5 + 5 精彩帖子

总评分: 经验 + 5  论坛币 + 5   查看全部评分

扫头像关注公众号“二点三西格玛”衍生品定价与风险管理

8
shelf317 发表于 2013-8-25 22:39:43
Chemist_MZ 发表于 2013-8-25 11:32
I am sorry that I did something wrong, since there is some very complicated issue when change the  ...
Thank you very much, Chemist_MZ!You just made my day!

I was stuck with the E[Wt ∫(0 to t)1/2*s^2*dw(s)]!
I learned something new!

Also, I did not know about the Ito's isometry in the form of E[∫(0 to t) g(s)dWs ∫(0 to t) h(s)dWs ] = E[∫(0 to t) g(s)h(s)ds]


Thank you again!




9
shelf317 发表于 2013-8-25 22:40:20
weilinhy 发表于 2013-8-25 10:34
Thank you for educating me on this form of Ito's isometry.

10
xuruilong100 发表于 2013-8-26 09:58:29
another approach to solve it
A^2 = 2int_0^t A_s dA
       = 2int_0^t A_s s W_s ds
       = 2int_0^t (int_0^s r W_r dr) s W_s ds
       = 2int_0^t int_0^s rW_r sW_s drds(关于r和s的双重积分)
计算E(A^2)时利用积分交换,计算E(rW_r sW_s) = r^2 * s
剩下的就是简单的双重积分
2int_0^t int_0^s r^2*s drds
=2/15*t^5
已有 1 人评分经验 论坛币 学术水平 热心指数 信用等级 收起 理由
Chemist_MZ + 10 + 10 + 1 + 1 + 1 好的意见建议

总评分: 经验 + 10  论坛币 + 10  学术水平 + 1  热心指数 + 1  信用等级 + 1   查看全部评分

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jr
拉您进交流群
GMT+8, 2025-12-30 09:44