Series: International Series in Operations Research & Management Science, Vol. 180
Gabriel, S.A., Conejo, A.J., Fuller, J.D., Hobbs, B.F., Ruiz, C.
2012, XXVI, 629 p. 41 illus.

- Applies complementarity models to energy markets for the first time
- Shows how complementarity models are well suited to situations which mix primal and dual variables
- The authors are acknowledged leaders in their field
a. optimization problems via their Karush-Kuhn-Tucker conditions
b. non-cooperative games in which each player may be solving a separate but related optimization problem with potentially overall system constraints (e.g., market-clearing conditions)
c. economic and engineering problems that aren’t specifically derived from optimization problems (e.g., spatial price equilibria)
d. problems in which both primal and dual variables (prices) appear in the original formulation (e.g., The National Energy Modeling System (NEMS) or its precursor, PIES).
As such, complementarity models are a very general and flexible modeling format.
A natural question is why concentrate on energy markets for this complementarity approach? As it turns out, energy or other markets that have game theoretic aspects are best modeled by complementarity problems. The reason is that the traditional perfect competition approach no longer applies due to deregulation and restructuring of these markets and thus the corresponding optimization problems may no longer hold. Also, in some instances it is important in the original model formulation to involve both primal variables (e.g., production) as well as dual variables (e.g., market prices) for public and private sector energy planning. Traditional optimization problems can not directly handle this mixing of primal and dual variables but complementarity models can and this makes them all that more effective for decision-makers.
Content Level » Research
Keywords » Complementarity Modeling Decision Making Energy Markets Equilibrium Operations Research Related subjects » Applications - Financial Economics - Operations Research & Decision Theory Table of contents Introduction and Motivation.- Optimality and Complementarity.- Some Microeconomic Principles.- Equilibria and Complementarity Problems.- Variational Inequality Problems.- Optimization Problems Constrained by Optimization Problems.- Equilibrium Problems with Equilibrium Constraints.- Algorithm for LCPs, NCPs, and VIs.- Some Advanced Algorithms for VI Decomposition, MPCCs and EPECs.- Natural Gas Market Modeling.- Electricity and Environmental Markets.- Multicommodity Equilibrium Models: Accounting for Demand-Side Linkages.
回复即可免费下载!
本帖隐藏的内容
Complementarity Modeling in Energy Markets-2013.pdf
(4.85 MB)



雷达卡








京公网安备 11010802022788号







