楼主: Trevor
2546 3

[案例分析]Item Response Theory using WinBUGS [推广有奖]

  • 1关注
  • 4粉丝

已卖:1100份资源

副教授

26%

还不是VIP/贵宾

-

TA的文库  其他...

Probability NewOccidental

RapidMiner NewOccidental

Machine Learning

威望
1
论坛币
3509 个
通用积分
0.7297
学术水平
25 点
热心指数
17 点
信用等级
24 点
经验
5225 点
帖子
412
精华
2
在线时间
176 小时
注册时间
2005-5-4
最后登录
2024-4-7

楼主
Trevor 发表于 2013-11-10 08:55:40 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Item Response Theory using WinBUGS.pdf (1.78 MB, 需要: 1 个论坛币)
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:response winbugs Theory WINBUG Using 案例分析

本帖被以下文库推荐

沙发
Trevor(未真实交易用户) 发表于 2013-12-14 02:17:02

Authors:

S. McKay Curtis

Title:

[download]
(13008)
BUGS Code for Item Response Theory

Reference:

Vol. 36, Code Snippet 1, Aug 2010Submitted 2010-03-30, Accepted 2010-07-07

Type:

Code Snippet

Paper:

[download]
(13008)
BUGS Code for Item Response Theory
(application/pdf, 1.4 MB)

Supplements:

[download]
(2904)
v36c01-code.zip: Data and code (BUGS, JAGS, R) for examples
(application/zip, 20.7 KB)

Resources:

BibTeX | OAI

藤椅
Trevor(未真实交易用户) 发表于 2013-12-14 02:18:47

Authors:

Dimitris Rizopoulos

Title:

[download]
(19883)
ltm: An R Package for Latent Variable Modeling and Item Response Analysis

Reference:

Vol. 17, Issue 5, Nov 2006Submitted 2006-05-08, Accepted 2006-11-20

Type:

Article

Abstract:

The R package ltm has been developed for the analysis of multivariate dichotomous and polytomous data using latent variable models, under the Item Response Theory approach. For dichotomous data the Rasch, the Two-Parameter Logistic, and Birnbaum's Three-Parameter models have been implemented, whereas for polytomous data Semejima's Graded Response model is available. Parameter estimates are obtained under marginal maximum likelihood using the Gauss-Hermite quadrature rule. The capabilities and features of the package are illustrated using two real data examples.

Paper:

[download]
(19883)
ltm: An R Package for Latent Variable Modeling and Item Response Analysis
(application/pdf, 447.3 KB)

Supplements:

[download]
(2150)
ltm_0.7-0.tar.gz: R source package
(application/x-gzip, 73.5 KB)

[download]
(2290)
v17i05.R: R example code from the paper
(application/x-zip-compressed, 1.7 KB)

Resources:

BibTeX | OAI

板凳
Trevor(未真实交易用户) 发表于 2013-12-14 02:20:01

Multilevel IRT Modeling in Practice with the Package mlirt

Authors:

Jean-Paul Fox

Title:

[download]
(9063)
Multilevel IRT Modeling in Practice with the Package mlirt

Reference:

Vol. 20, Issue 5, Feb 2007Submitted 2006-10-01, Accepted 2007-02-22

Type:

Article

Abstract:

Variance component models are generally accepted for the analysis of hierarchical structured data. A shortcoming is that outcome variables are still treated as measured without an error. Unreliable variables produce biases in the estimates of the other model parameters. The variability of the relationships across groups and the group-effects on individuals' outcomes differ substantially when taking the measurement error in the dependent variable of the model into account. The multilevel model can be extended to handle measurement error using an item response theory (IRT) model, leading to a multilevel IRT model. This extended multilevel model is in particular suitable for the analysis of educational response data where students are nested in schools and schools are nested within cities/countries.

Paper:

[download]
(9063)
Multilevel IRT Modeling in Practice with the Package mlirt
(application/pdf, 309.5 KB)

Supplements:

[download]
(2487)
Data.zip: Data sets in SPSS format
(application/zip, 2 MB)

[download]
(2559)
mlirt_1.0.tar.gz: R source package
(application/x-gzip, 682.5 KB)

[download]
(2422)
v20i05.R: R example code from the paper
(application/zip, 2 KB)

Resources:

BibTeX | OAI

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-31 18:50