449 0

[英文文献] Multidimensional Spatial Poverty Comparisons in Cameroon-喀麦隆多维空间贫困比较 [推广有奖]

  • 0关注
  • 0粉丝

等待验证会员

学前班

0%

还不是VIP/贵宾

-

威望
0
论坛币
0 个
通用积分
0
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
10 点
帖子
0
精华
0
在线时间
0 小时
注册时间
2020-9-21
最后登录
2020-9-21

楼主
货币供应量170 发表于 2005-6-27 05:30:51 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
英文文献:Multidimensional Spatial Poverty Comparisons in Cameroon-喀麦隆多维空间贫困比较
英文文献作者:Aloysius Mom Njong
英文文献摘要:
The study investigates poverty comparisons across the various strata and urban/ rural areas in Cameroon. A composite poverty indicator is constructed using multiple correspondence analysis by taking into account 33 non-monetary indicators that havebeen identified as describing a real poverty situation. The composite poverty indicator is combined with per capita consumption to estimate poverty measures showing that income poverty affects 39.6% of households, whereas 80.6% of households are poor in the non-monetary dimension. The incidence of multidimensional poverty is estimated to be at 81.3%. Decomposition of the Chakravarty indexes fails to establish robust regional poverty orderings and comparisons. By resorting to the stochastic dominance approach we find that bi-dimensional poverty for urban areas is robustly lower than that for rural areas. Between regions, there is clear evidence that bi-dimensional poverty in Yaounde/ Douala is less than other regions and that the Rural Savannah is the poorest region of the country for a wide range of poverty lines and a broad class of poverty measures. The discriminatory measures of variables reveal that water, sanitation, housing materials, level of education and roads are the major indicators of non-monetary poverty in Cameroon. Policy should therefore, in addition to promoting income-generating activities, focus on these variables and target the rural areas as well as the northern regions to better alleviate poverty in Cameroon.

这项研究调查了喀麦隆各阶层和城乡地区的贫困比较。综合贫困指标采用多重对应分析,考虑到33个已被确定为描述真实贫困状况的非货币指标。将综合贫困指标与人均消费相结合来估计贫困指标,结果显示,39.6%的家庭受到收入贫困的影响,而80.6%的家庭在非货币方面处于贫困状态。多维贫困的发生率估计为81.3%。Chakravarty指数的分解不能建立健全的地区贫困排序和比较。利用随机优势分析方法,我们发现城市地区的二维贫困显著低于农村地区。在各区域之间,有明确的证据表明,雅温得/杜阿拉的双重贫困比其他区域要少,而农村大草原是全国最贫穷的地区,贫穷线范围广泛,衡量贫困的标准也很广泛。对变量的歧视性措施表明,水、卫生、住房材料、教育水平和道路是喀麦隆非货币贫困的主要指标。因此,政策除了促进创收活动外,还应注重这些变数,并以农村地区和北部地区为对象,以便更好地减轻喀麦隆的贫穷。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝


您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-29 13:35