想要比较矩阵与矩阵列数值,具体的代码应该怎么写?模型系数不同是否AIC,SC数值是一样的?我所研究的问题是,设定数据使用最小二乘法建立了模型,并且得出系数估计值,进而提取R2以及AIC,SC的数值,将各模型数据进行比较,然后得出哪个模型最好。但是问题出现在系数怎么改变但是AIC,SC的数值尽然是一样的。并且假设数值一样,但是我数据比较时,发生了不一样,很疑惑,求解答~谢谢!!附上我的编程,求大神指导!使用的是eviews6.0
workfile moni u 1 50
!b1=1000
!b2=2
!b3=3
matrix(100,3) f1
matrix(100,3) f2
matrix(100,3) f3
matrix(100,3) f4
matrix(100,3) f5
matrix(100,4) ss1
matrix(100,4) ss2
matrix(100,4) ss3
matrix(100,4) ss4
matrix(100,4) ss5
matrix(4,4) p
!n11=0
!n12=0
!n13=0
!n14=0
!n21=0
!n22=0
!n23=0
!n24=0
!n31=0
!n32=0
!n33=0
!n34=0
!n41=0
!n42=0
!n43=0
!n44=0
for !K=1 to 100
series x1=2000*nrnd
series x2=2000*nrnd
series u=200*nrnd
series ser01=!b1+!b2*x1+!b3*x2+u
equation eql1.ls ser01=c(11)+c(12)*x1+c(13) *x2
scalar s11=eql1.@r2
scalar s12=eql1.@rbar2
scalar s13=eql1.@aic
scalar s14=eql1.@schwarz
f1(!k,1)=c(11)
f1(!k,2)=c(12)
f1(!k,3)=c(13)
ss1(!k,1)=s11
ss1(!k,2)=s12
ss1(!k,3)=s13
ss1(!k,4)=s14
series ser01=!b1+!b2*x1+u
equation eql2.ls ser01=c(21)+c(22)*x1
f2(!k,1)=c(21)
f2(!k,2)=c(22)
f2(!k,3)=0
scalar s21=eql2.@r2
scalar s22=eql2.@rbar2
scalar s23=eql2.@aic
scalar s24=eql2.@schwarz
ss2(!k,1)=s21
ss2(!k,2)=s22
ss2(!k,3)=s23
ss2(!k,4)=s24
if s21> s11 then
!n11=!n11+1
endif
if s22> s12 then
!n12=!n12+1
endif
if s23> s13 then
!n13=!n13+1
endif
if s24> s14 then
!n14=!n14+1
endif
p(1,1)=!n11
p(1,2)=!n12
p(1,3)=!n13
p(1,4)=!n14
series ser01=!b1+!b2*x1+1.5*x2+u
equation eql3.ls ser01=c(31)+c(32) *x1+c(33)*x2
f3(!k,1)=c(31)
f3(!k,2)=c(32)
f3(!k,3)=c(33)
scalar s31=eql3.@r2
scalar s32=eql3.@rbar2
scalar s33=eql3.@aic
scalar s34=eql3.@schwarz
ss3(!k,1)=s31
ss3(!k,2)=s32
ss3(!k,3)=s33
ss3(!k,4)=s34
if s31> s11 then
!n21=!n21+1
endif
if s32> s12 then
!n22=!n22+1
endif
if s33> s13 then
!n23=!n23+1
endif
if s34> s14 then
!n24=!n24+1
endif
p(2,1)=!n21
p(2,2)=!n22
p(2,3)=!n23
p(2,4)=!n24
series ser01=!b1+!b2*x1+0.1*x2+u
equation eql4.ls ser01=c(41)+c(42) *x1+c(43)*x2
f4(!k,1)=c(41)
f4(!k,2)=c(42)
f4(!k,3)=c(43)
scalar s41=eql4.@r2
scalar s42=eql4.@rbar2
scalar s43=eql4.@aic
scalar s44=eql4.@schwarz
ss4(!k,1)=s41
ss4(!k,2)=s42
ss4(!k,3)=s43
ss4(!k,4)=s44
if s41> s11 then
!n31=!n31+1
endif
if s42> s12 then
!n32=!n32+1
endif
if s43> s13 then
!n33=!n33+1
endif
if s44> s14 then
!n34=!n34+1
endif
p(3,1)=!n31
p(3,2)=!n32
p(3,3)=!n33
p(3,4)=!n34
series ser01=!b1+!b2*x1+0.001*x2+u
equation eql5.ls ser01=c(51)+c(52) *x1+c(53)*x2
f5(!k,1)=c(51)
f5(!k,2)=c(52)
f5(!k,3)=c(53)
scalar s51=eql5.@r2
scalar s52=eql5.@rbar2
scalar s53=eql5.@aic
scalar s54=eql5.@schwarz
ss5(!k,1)=s51
ss5(!k,2)=s52
ss5(!k,3)=s53
ss5(!k,4)=s54
if s51> s11 then
!n41=!n41+1
endif
if s52> s12 then
!n42=!n42+1
endif
if s53> s13 then
!n43=!n43+1
endif
if s54> s14 then
!n44=!n44+1
endif
p(4,1)=!n41
p(4,2)=!n42
p(4,3)=!n43
p(4,4)=!n44
next
show f1
show f2
show f3
show f4
show f5
show ss1
show ss2
show ss3
show ss4
show ss5
show p


雷达卡


京公网安备 11010802022788号







