2690 3

Tom Doan: Multivariate STAR Model using WinRats [推广有奖]

  • 0关注
  • 10粉丝

已卖:1625份资源

教授

8%

还不是VIP/贵宾

-

TA的文库  其他...

Must-Read Book

Winrats NewOccidental

Matlab NewOccidental

威望
1
论坛币
31504 个
通用积分
4.4911
学术水平
96 点
热心指数
43 点
信用等级
79 点
经验
9658 点
帖子
287
精华
10
在线时间
40 小时
注册时间
2013-12-14
最后登录
2024-4-12

楼主
农村固定观察点 发表于 2014-6-23 23:40:34 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Multivariate STAR Model

by TomDoan » Tue Jun 17, 2014 1:21 pm

Attached is an example of a bivariate STAR model. The base model is a VAR on the GDP growth rate and an interest rate spread. The threshold variables are different lags of the growth rate: lag one in GDP equation and lag two in the spread equation. In this case, all four branches (two regimes x two equations) use the standard two lag VAR explanatory variables, though that isn't required.

As I've told a number of people who have asked about this, it's a straightforward extension of the STAR model to a multivariate setting. In fact, this uses the univariate regressions (done withNLLS) to get guess values for the multivariate regression (done with NLSYSTEM). The main reason there's a relatively thin literature with actual data is that it can be hard to get it to work properly. In this case, for instance, the spread equation fits better with a "sharp" rather than "smooth" transition, which means that the optimal value for the gamma (the scale in the logistic) is infinity and the center point can't be estimated well using non-linear least squares since the sum of squares isn't differentiable.

app19-9-2.rpfProgram file(1.71 KiB) Downloaded 74 times
g7_japan.datData file(2.93 KiB) Downloaded 53 times


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Multivariate multivariat Variate WinRATS winrat different equation interest standard example

本帖被以下文库推荐

沙发
songlinjl 发表于 2014-6-24 05:52:02 来自手机
农村固定观察点 发表于 2014-6-23 23:40
Multivariate STAR Modelby TomDoan » Tue Jun 17, 2014 1:21 pmAttached is an example  ...
转不了

藤椅
农村固定观察点 发表于 2017-2-12 23:17:04
  1. *
  2. * Martin, Hurn, Harris, "Econometric Modelling with Time Series"
  3. * Application 19.9.2, from pp 745-748
  4. * Bivariate Threshold Models
  5. *
  6. * Based upon Anderson, Anthansopoulos, and Vahid(2007), "Nonlinear
  7. * autoregressive leading indicator models of output in G-7
  8. * countries",Journal of Applied Econometrics, vol 22, 63–87.
  9. *
  10. open data "g7_japan.dat"
  11. calendar(q) 1971:1
  12. data(format=prn,nolabels,org=columns) 1971:01 1999:4 date growth spread
  13. *
  14. equation yeqn growth
  15. # constant growth{1 2} spread{1 2}
  16. equation seqn spread
  17. # constant growth{1 2} spread{1 2}
  18. *
  19. frml(equation=yeqn,vector=bg1) fg1
  20. frml(equation=yeqn,vector=bg2) fg2
  21. frml(equation=seqn,vector=bs1) fs1
  22. frml(equation=seqn,vector=bs2) fs2
  23. *
  24. set threshg = growth{2}
  25. set threshs = growth{1}
  26. *
  27. stats threshg
  28. nonlin(parmset=starg) gammag cg
  29. compute gammag=2.0/sqrt(%variance),cg=%mean
  30. stats threshs
  31. nonlin(parmset=stars) gammas cs
  32. compute gammas=2.0/sqrt(%variance),cs=%mean
  33. *
  34. nonlin(parmset=regg) bg1 bg2
  35. nonlin(parmset=regs) bs1 bs2
  36. *
  37. frml glstarg = %logistic(gammag*(threshg-cg),1.0)
  38. frml glstars = %logistic(gammas*(threshs-cs),1.0)
  39. *
  40. frml lstarg growth = g=glstarg,fg1+g*fg2
  41. frml lstars spread = g=glstars,fs1+g*fs2
  42. *
  43. * Estimate growth equation separately
  44. *
  45. nlls(parmset=regg,frml=lstarg) growth
  46. nlls(parmset=regg+starg,frml=lstarg) growth
  47. *
  48. * Estimate spread equation separately
  49. *
  50. nlls(parmset=regs,frml=lstars) spread
  51. nlls(parmset=regs+stars,frml=lstars) spread
  52. *
  53. * Spread estimates what's effectively a sharp rather than smooth
  54. * transition. For systems estimation purposes, we'll reset gammas to a
  55. * finite number.
  56. *
  57. compute gammas=20.0
  58. *
  59. * Estimate the joint model. This again estimates a sharp transition for
  60. * the spread equation.
  61. *
  62. nlsystem(parmset=regg+regs+starg+stars,iters=500) / lstarg lstars
复制代码

板凳
农村固定观察点 发表于 2017-2-12 23:18:37
  1. 1970.1        2.8653535        -1.34
  2. 1970.2        0.85218774        -1.06
  3. 1970.3        2.7600238        -1.29
  4. 1970.4        -0.087854168        -0.74
  5. 1971.1        0.40349162        0.03
  6. 1971.2        1.5698773        0.82
  7. 1971.3        1.6939963        1.27
  8. 1971.4        0.97384889        1.78
  9. 1972.1        2.7414848        1.85
  10. 1972.2        2.000390        2.04
  11. 1972.3        1.9493872        1.93
  12. 1972.4        2.4649067        1.688
  13. 1973.1        3.1298776        1.207
  14. 1973.2        1.0335246        0.542
  15. 1973.3        -0.02203533        -1.197
  16. 1973.4        0.86308318        -1.691
  17. 1974.1        -2.5521373        -3.28
  18. 1974.2        0.86290798        -3.3
  19. 1974.3        1.2202119        -3.47
  20. 1974.4        -0.6257303        -3.862
  21. 1975.1        -0.19899771        -3.57
  22. 1975.2        2.4288561        -1.55
  23. 1975.3        1.060049        -0.547
  24. 1975.4        1.1123625        1.057
  25. 1976.1        0.92575396        1.7
  26. 1976.2        0.75111194        1.866
  27. 1976.3        1.2462937        1.708
  28. 1976.4        0.21873246        1.619
  29. 1977.1        2.401667        1.718
  30. 1977.2        0.75869245        1.834
  31. 1977.3        0.60842583        1.881
  32. 1977.4        1.4248766        1.256
  33. 1978.1        1.6187592        1.41
  34. 1978.2        0.76722453        1.954
  35. 1978.3        1.3750835        1.94
  36. 1978.4        1.2177584        1.533
  37. 1979.1        0.87044509        2.311
  38. 1979.2        1.7259966        2.7262
  39. 1979.3        0.92863952        1.0502
  40. 1979.4        0.86993798        0.5943
  41. 1980.1        1.4647984        -0.73
  42. 1980.2        -0.23876089        -4.033
  43. 1980.3        0.88809499        -2.194
  44. 1980.4        1.2162438        -0.0784
  45. 1981.1        1.5577742        0.255
  46. 1981.2        0.11375527        1.6622
  47. 1981.3        0.99995247        1.7622
  48. 1981.4        0.38833923        1.2286
  49. 1982.1        0.93687825        0.9045
  50. 1982.2        1.2753954        1.3425
  51. 1982.3        0.38243548        1.423
  52. 1982.4        0.90630802        0.5787
  53. 1983.1        0.45208817        0.8577
  54. 1983.2        0.27505216        1.2929
  55. 1983.3        1.5118282        0.7474
  56. 1983.4        0.33403826        0.4925
  57. 1984.1        1.569055        0.1775
  58. 1984.2        1.3476366        1.2125
  59. 1984.3        0.61552627        0.4747
  60. 1984.4        0.78283434        -0.1075
  61. 1985.1        1.5364632        0.1833
  62. 1985.2        1.8370137        0.1324
  63. 1985.3        0.57253672        -0.5163
  64. 1985.4        1.4975401        -2.2
  65. 1986.1        -1.0225196        -0.8239
  66. 1986.2        1.512838        0.5894
  67. 1986.3        0.64926161        0.37
  68. 1986.4        1.2952376        0.4275
  69. 1987.1        0.4900279        -0.1342
  70. 1987.2        0.49334769        0.7485
  71. 1987.3        1.7711997        2.0908
  72. 1987.4        2.1496419        0.4675
  73. 1988.1        1.6486104        0.4366
  74. 1988.2        0.68988429        1.0507
  75. 1988.3        1.9921443        0.7622
  76. 1988.4        1.2267913        0.12
  77. 1989.1        1.2755196        0.7443
  78. 1989.2        -0.13647397        0.3134
  79. 1989.3        2.0117067        -0.155
  80. 1989.4        1.2332191        -0.4172
  81. 1990.1        0.37702198        0.7142
  82. 1990.2        2.1358704        -0.1439
  83. 1990.3        1.1565279        1.046
  84. 1990.4        1.2190627        -1.0931
  85. 1991.1        1.0639901        -1.3006
  86. 1991.2        0.6255564        -0.8441
  87. 1991.3        0.31595603        -0.8604
  88. 1991.4        0.80395942        -0.717
  89. 1992.1        0.59646885        -0.2161
  90. 1992.2        -0.31155528        0.4511
  91. 1992.3        -0.46916051        0.3916
  92. 1992.4        0.018439978        0.5433
  93. 1993.1        0.092148919        0.9282
  94. 1993.2        0.34939351        0.8757
  95. 1993.3        0.14674863        0.5022
  96. 1993.4        -0.11921685        0.136
  97. 1994.1        0.000000        1.21
  98. 1994.2        0.51254002        1.6075
  99. 1994.3        0.60978573        1.7309
  100. 1994.4        -0.27257876        1.6169
  101. 1995.1        -0.52910176        0.8211
  102. 1995.2        1.5429604        0.8609
  103. 1995.3        0.64637984        1.3765
  104. 1995.4        0.73110169        1.711
  105. 1996.1        2.6214625        1.8445
  106. 1996.2        0.095143371        1.9285
  107. 1996.3        -0.4071561        1.5821
  108. 1996.4        1.0620486        1.444
  109. 1997.1        1.9898616        1.24
  110. 1997.2        -2.8004904        1.4243
  111. 1997.3        0.77626748        1.042
  112. 1997.4        -0.37013169        1.1357
  113. 1998.1        0.1723247        0.8491
  114. 1998.2        -0.72576783        0.7732
  115. 1998.3        -0.28657047        0.3385
  116. 1998.4        -0.8295904        1.109
  117. 1999.1        1.9537807        1.1091
  118. 1999.2        0.1031371        1.16

  119. Date        Growth                Spread
复制代码

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-29 06:50