楼主: yhongl12
3451 2

A Benchmark approach to quantitative finance  关闭 [推广有奖]

  • 0关注
  • 7粉丝

已卖:6474份资源

教授

72%

还不是VIP/贵宾

-

威望
0
论坛币
62861 个
通用积分
13.0856
学术水平
37 点
热心指数
37 点
信用等级
23 点
经验
42138 点
帖子
729
精华
0
在线时间
2105 小时
注册时间
2007-6-2
最后登录
2023-4-30

楼主
yhongl12 发表于 2008-6-27 10:34:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
223033.rar (12.54 MB, 需要: 5 个论坛币) 本附件包括:
  • c9.pdf
  • c10.pdf
  • c11.pdf
  • c12.pdf
  • c13.pdf
  • c14.pdf
  • c15.pdf
  • front-matter.pdf
  • c16.pdf
  • back-matter.pdf
  • c1.pdf
  • c2.pdf
  • c3.pdf
  • c4.pdf
  • c5.pdf
  • c6.pdf
  • c7.pdf
  • c8.pdf

非常全的数量金融入门教材,并且含习题解答.有志于金融工程的朋友一定会收益非浅.最新版本2007年!

[此贴子已经被angelboy于2008-8-14 13:26:27编辑过]

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Quantitative QUANTITATIV benchmark Approach Finance Finance benchmark Quantitative Approach

the logic of finance

沙发
city_o2(未真实交易用户) 发表于 2008-6-27 13:06:00

讲点内容什么的,你就放个标题没人买的~

藤椅
angelboy(未真实交易用户) 在职认证  发表于 2008-8-14 13:27:00

简介:In recent years products based on financial derivatives have become an indispensable
tool for risk managers and investors. Insurance products have become
part of almost every personal and business portfolio. The management of mutual
and pension funds has gained in importance for most individuals. Banks,
insurance companies and other corporations are increasingly using financial
and insurance instruments for the active management of risk. An increasing
range of securities allows risks to be hedged in a way that can be closely tailored
to the specific needs of particular investors and companies. The ability
to handle efficiently and exploit successfully the opportunities arising from
modern quantitative methods is now a key factor that differentiates market
participants in both the finance and insurance fields. For these reasons it is
important that financial institutions, insurance companies and corporations
develop expertise in the area of quantitative finance, where many of the associated
quantitative methods and technologies emerge.

BasicNotation ............................................XIII
1PreliminariesfromProbabilityTheory.....................1
1.1DiscreteRandomVariablesandDistributions...............1
1.2ContinuousRandomVariablesandDistributions............11
1.3MomentsofRandomVariables............................22
1.4JointDistributionsandRandomVectors...................39
1.5Copulas(*).............................................50
1.6ExercisesforChapter1..................................53
2StatisticalMethods ........................................55
2.1LimitTheorems.........................................55
2.2Con?denceIntervals.....................................63
2.3EstimationMethods.....................................70
2.4MaximumLikelihoodEstimation..........................78
2.5NormalVarianceMixtureModels..........................81
2.6DistributionofIndexLog-Returns.........................84
2.7ConvergenceofRandomSequences........................92
2.8ExercisesforChapter2..................................98
3ModelingviaStochasticProcesses .........................99
3.1IntroductiontoStochasticProcesses.......................99
3.2CertainClassesofStochasticProcesses.....................106
3.3DiscreteTimeMarkovChains.............................110
3.4ContinuousTimeMarkovChains..........................113
3.5PoissonProcesses........................................120
3.6LevyProcesses(*).......................................126
3.7InsuranceRiskModeling(*)..............................128
3.8ExercisesforChapter3..................................131

4DiusionProcesses ........................................133
4.1ContinuousMarkovProcesses .............................133
4.2ExamplesforContinuousMarkovProcesses.................136
4.3Di?usionProcesses ......................................141
4.4KolmogorovEquations..................................145
4.5Di?usionswithStationaryDensities.......................154
4.6Multi-DimensionalDi?usionProcesses(*)..................159
4.7ExercisesforChapter4..................................161
5MartingalesandStochasticIntegrals.......................163
5.1Martingales.............................................163
5.2QuadraticVariationandCovariation.......................174
5.3GainsfromTradeasStochasticIntegral....................187
5.4It?oIntegralforWienerProcesses..........................193
5.5StochasticIntegralsforSemimartingales(*).................197
5.6ExercisesforChapter5..................................203
6TheItoFormula ...........................................205
6.1TheStochasticChainRule...............................205
6.2MultivariateIt?oFormula.................................209
6.3SomeApplicationsoftheIt?oFormula......................213
6.4ExtensionsoftheIt?oFormula.............................222
6.5LevyˉsTheorem(*......................................227
6.6AProofoftheIt?oFormula(*)............................230
6.7ExercisesforChapter6..................................234

7StochasticDierentialEquations ..........................237
7.1SolutionofaStochasticDi?erentialEquation...............237
7.2LinearSDEwithAdditiveNoise...........................241
7.3LinearSDEwithMultiplicativeNoise......................243
7.4VectorStochasticDi?erentialEquations....................246
7.5ConstructingExplicitSolutionsofSDEs....................248
7.6JumpDi?usions(*)......................................254
7.7ExistenceandUniqueness(*).............................261
7.8MarkovianSolutionsofSDEs(*)..........................272
7.9ExercisesforChapter7..................................275
8IntroductiontoOptionPricing ............................277
8.1Options................................................277
8.2OptionsundertheBlack-ScholesModel....................281
8.3TheBlack-ScholesFormula...............................288
8.4SensitivitiesforEuropeanCallOption.....................290
8.5EuropeanPutOption....................................295
8.6HedgeSimulation........................................298
8.7SquaredBesselProcesses(*) ..............................304

ContentsXI
8.8ExercisesforChapter8..................................317
9VariousApproachestoAssetPricing ......................319
9.1RealWorldPricing......................................319
9.2ActuarialPricing........................................329
9.3CapitalAssetPricingModel..............................332
9.4RiskNeutralPricing.....................................336
9.5GirsanovTransformationandBayesRule(*)................345
9.6ChangeofNumeraire(*).................................350
9.7Feynman-KacFormula(*)................................356
9.8ExercisesforChapter9..................................364
10ContinuousFinancialMarkets .............................367
10.1PrimarySecurityAccountsandPortfolios..................367
10.2GrowthOptimalPortfolio................................372
10.3SupermartingaleProperty................................375
10.4RealWorldPricing......................................378
10.5GOPasBestPerformingPortfolio.........................386
10.6Diversi?edPortfoliosinCFMs............................389
10.7ExercisesforChapter10.................................402
11PortfolioOptimization.....................................403
11.1LocallyOptimalPortfolios................................404
11.2MarketPortfolioandGOP...............................415
11.3ExpectedUtilityMaximization............................419
11.4PricingNonreplicablePayo?s.............................427
11.5Hedging...............................................430
11.6ExercisesforChapter11.................................437

12ModelingStochasticVolatility .............................439
12.1StochasticVolatility.....................................439
12.2Modi?edCEVModel....................................444
12.3LocalVolatilityModels...................................461
12.4StochasticVolatilityModels..............................472
12.5ExercisesforChapter12.................................481
13MinimalMarketModel ....................................483
13.1ParametrizationviaVolatilityorDrift.....................483
13.2StylizedMinimalMarketModel...........................488
13.3DerivativesundertheMMM..............................496
13.4MMMwithRandomScaling(*)...........................503
13.5ExercisesforChapter13.................................511

14MarketswithEventRisk ..................................513
14.1JumpDi?usionMarkets..................................513
14.2Diversi?edPortfolios.....................................523
14.3Mean-VariancePortfolioOptimization.....................532
14.4RealWorldPricingforTwoMarketModels.................536
14.5ExercisesforChapter14.................................549
15NumericalMethods........................................551
15.1RandomNumberGeneration..............................551
15.2ScenarioSimulation......................................558
15.3ClassicalMonteCarloMethod............................570
15.4MonteCarloSimulationforSDEs.........................578
15.5VarianceReductionofFunctionalsofSDEs.................587
15.6TreeMethods...........................................591
15.7FiniteDi?erenceMethods................................600
15.8ExercisesforChapter15.................................611
16SolutionsforExercises.....................................615
Acknowledgements ........................................667
References.....................................................669
AuthorIndex..................................................685
Index ..........................................................691

[/UseMoney]

MathematicsSubjectClassication(2000):62P05,60G35,62P20
JELClassication:G10,G13
LibraryofCongressControlNumber:2006932290
ISBN-103-540-26212-1 SpringerBerlinHeidelbergNewYork
ISBN-13978-3-540-26212-1 SpringerBerlinHeidelbergNewYork
Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis
concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting,
reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication
orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9,
1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violations
areliabletoprosecutionundertheGermanCopyrightLaw.
SpringerisapartofSpringerScience+BusinessMedia
springer.com
Springer-VerlagBerlinHeidelberg2006
Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnot
imply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant
protectivelawsandregulationsandthereforefreeforgeneraluse.
Coverdesign:WMXDesignGmbH,Heidelberg
A
T Xmacropackage
Typesetting:bytheauthorsusingaSpringerL
E
Production:LE-T XJelonek,Schmidt&VcklerGbR,Leipzig
E
Printedonacid-freepaper 41/3100YL-543210

农妇 山泉 有点田

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jr
拉您进交流群
GMT+8, 2025-12-26 09:50