2008年版,作者:Alexander Levin
共527页
1 Preliminaries 1
1.1 Basic Terminology and BackgroundMaterial . . . . . . . . . . . 1
1.2 Elements of the Theory of Commutative Rings . . . . . . . . . . 15
1.3 Graded and Filtered Rings and Modules . . . . . . . . . . . . . . 37
1.4 Numerical Polynomials . . . . . . . . . . . . . . . . . . . . . . . . 47
1.5 Dimension Polynomials of Sets of
m-tuples . . . . . . . . . . . . 531.6 Basic Facts of the Field Theory . . . . . . . . . . . . . . . . . . . 64
1.7 Derivations and Modules of Differentials . . . . . . . . . . . . . . 89
1.8 Gr¨obner Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
2 Basic Concepts of Difference Algebra 103
2.1 Difference and Inversive Difference Rings . . . . . . . . . . . . . . 103
2.2 Rings of Difference and Inversive Difference Polynomials . . . . . 115
2.3 Difference Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
2.4 Autoreduced Sets of Difference and Inversive Difference
Polynomials. Characteristic Sets . . . . . . . . . . . . . . . . . . 128
2.5 Ritt Difference Rings . . . . . . . . . . . . . . . . . . . . . . . . . 141
2.6 Varieties of Difference Polynomials . . . . . . . . . . . . . . . . . 149
3 Difference Modules 155
3.1 Ring of Difference Operators. Difference Modules . . . . . . . . . 155
3.2 Dimension Polynomials of Difference Modules . . . . . . . . . . . 157
3.3 Gr¨obner Bases with Respect to Several Orderings
and Multivariable Dimension Polynomials of Difference
Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
3.4 Inversive DifferenceModules . . . . . . . . . . . . . . . . . . . . . 185
3.5
σ∗-Dimension Polynomials and their Invariants . . . . . . . . . . 1953.6 Dimension of General DifferenceModules . . . . . . . . . . . . . 232
ix
x
CONTENTS4 Difference Field Extensions 245
4.1 Transformal Dependence. Difference Transcendental Bases
and Difference Transcendental Degree . . . . . . . . . . . . . . . 245
4.2 Dimension Polynomials of Difference and Inversive Difference
Field Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
4.3 Limit Degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
4.4 The Fundamental Theorem on Finitely Generated Difference
Field Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
4.5 Some Results on Ordinary Difference Field Extensions . . . . . . 295
4.6 Difference Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 300
5 Compatibility, Replicability, and Monadicity 311
5.1 Compatible and Incompatible Difference Field Extensions . . . . 311
5.2 Difference Kernels over Ordinary Difference Fields . . . . . . . . 319
5.3 Difference Specializations . . . . . . . . . . . . . . . . . . . . . . 328
5.4 Babbitt’s Decomposition. Criterion of Compatibility . . . . . . . 332
5.5 Replicability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
5.6 Monadicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
6 Difference Kernels over Partial Difference Fields. Difference
Valuation Rings 371
6.1 Difference Kernels over Partial Difference Fields
and their Prolongations . . . . . . . . . . . . . . . . . . . . . . . 371
6.2 Realizations of Difference Kernels over Partial Difference Fields . 376
6.3 Difference Valuation Rings and Extensions of Difference
Specializations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
7 Systems of Algebraic Difference Equations 393
7.1 Solutions of Ordinary Difference Polynomials . . . . . . . . . . . 393
7.2 Existence Theorem for Ordinary Algebraic Difference
Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
7.3 Existence of Solutions of Difference Polynomials in the Case
of Two Translations . . . . . . . . . . . . . . . . . . . . . . . . . 412
7.4 Singular and Multiple Realizations . . . . . . . . . . . . . . . . . 420
7.5 Review of Further Results on Varieties of Ordinary Difference
Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
7.6 Ritt’s Number. Greenspan’s and Jacobi’s Bounds . . . . . . . . . 433
7.7 Dimension Polynomials and the Strength of a System of Algebraic
Difference Equations . . . . . . . . . . . . . . . . . . . . . . . . . 440
7.8 Computation of Difference Dimension Polynomials in the Case
of Two Translations . . . . . . . . . . . . . . . . . . . . . . . . . 455
8 Elements of the Difference Galois Theory 463
8.1 Galois Correspondence for Difference Field Extensions . . . . . . 463
8.2 Picard-Vessiot Theory of Linear Homogeneous Difference
Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
CONTENTS
xi8.3 Picard-Vessiot Rings and the Galois Theory of Difference
Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486

雷达卡




京公网安备 11010802022788号







