应用大数据进行精准营销,要注意规避如下三大陷阱:
1,有数不一定有据;
2,大而不全;
3,内生变量模糊了因果关系。
无论基于大数据的精准营销最后谁是赢家,笑到最后的应该是消费者,特别是新一代以网络为家的消费者。
大数据营销应用的现状可用这样几个“多”来形容:说的比投入的多;投的比做的多,如有些大型国企投入资金,建部门、雇海归,但并没有真正做什么;做的比懂的多,收集了一些数据,但读不出有价值的信息来;懂的比赚的多;认为今后赚的比现在想到的多。
如何才能实现光明的前景?一要养成大数据思维,二要避开三大陷阱。
大数据思维
大数据思维有如下四个维度。
定量思维:一切皆可测。POS机、网上购物、社交媒体以及各种各样的卡,都是大数据的来源。例如,通过传感器,利用红外线微波可以观测人的生理状态、脑电波等,如果驾车人员犯困,其心理指标发生变化并到一个临界值,汽车后台就会告诫驾驶员休息。赌场入口处的红外传感器,会根据脑部热量情况,分析进来的是冲动型赌徒还是冷静的赌徒。
汽车行业的大数据有人、车、环境三个来源。“人”不仅包括车主或者驾驶人员,还应包括乘客;“环境”不光是路面信息,还包括行车所到之处的周边信息,如旅馆、加油站、旅游景点等等,典型如地图应用。“车”的应用也已有案例,如美国一家保险公司为汽车加装了跟踪器,根据行驶数据来决定保险费率;米其林也会搜集与环境相关的数据,某智能芯片厂商为长途货运汽车提供的芯片,可以全球定位、调节物流和运输。
跨界思维:一切或可联。跨界有不同媒介、渠道间的跨界,如O2O和LBS,也有商业模式、数据应用的跨界。例如,GoPro是穿戴式照相机,但它也为寻求刺激的滑雪、跳伞运动爱好者,剪辑加工影像,并在电视上播出,吸引了广告和巨量的粉丝团队。
操作思维:一切要可行。应用大数据,不等于非得要上高大上的设备和硬件投入。例如视频公司根据用户观看视频的过程来决定推送什么广告,其算法可能比较简陋,但速度快。其次,要把数据和用户心理结合起来,营销精准但不要引起顾客的反感。第三,大数据管理要与KPI结合起来,协调各个部门的利益,否则大家对数据采集不积极甚至不合作。例如,运营部门如果看重节省运营成本,可能就对数据采集的意愿不强烈。
实验思维:一切应可试。比如,要想知道推荐的效果,可以做一个实验。一半消费者有推荐,一半没有。从短期看,推荐效果并不明显,但长期效果非常明显。因为推荐是购物体验的一部分。短时间内,消费者对所推荐的产品可能没需求,但到有需求时就会想起来,尤其是当推荐产品符合他们的品位和风格时。
三大陷阱
应用大数据进行精准营销,要注意规避如下三大陷阱。
有数不一定有据。应用大数据需要什么样的统计或逻辑背景?首先,描述。要能辨识出我们描述的人跟心里想的目标人群是不是一群人。其次,预测。理解现象、变量之间的相关性。第三,优化。理解因果关系,否则无法优化。简言之,预测需要相关性,而优化则需要因果性,而描述关键在样本的代表性。
大而不全。有些大数据应用收集的数据非常多,但对其倾向性却不清楚。解决的办法是跨界,收集企业之外的数据。例如,汽车制造商要跟电商结合,要跟社交媒体结合,通过跨界把数据做全,才能把精准营销做得更好。其次,要把营销、销售和库存等内部信息打通。
内生变量模糊了因果关系。大数据介入消费者购买过程越多,可能对消费者真实偏好的了解越少。例如,视频网站给某用户推荐了一个同性恋电影,他看了;再推荐一部,他又看了。这时,推荐系统就会认定该用户是同性恋,从而继续推荐,实际上该用户可能不过是一时好奇,最后深受其害。解决办法是定期实验。
基于大数据的精准营销到底谁会胜出?在我看来,要至少具备以下资源优势的一种:产品有优势、对客户特别了解、数据来源特别多、平台优势。目前,电商的优势显而易见,因为其数据量非常大,而且有平台优势。
制造商的机会在哪里?一要把产品做得非常好,二要联网提供服务,就像特斯拉,买车,更是买背后的互联网服务。然而,无论谁是赢家,笑到最后的应该是消费者,特别是新一代以网络为家的消费者。