楼主: Lisrelchen
1676 3

[Case Study]Customer Clustering using SPSS Clementine's RFM analysis [推广有奖]

  • 0关注
  • 62粉丝

VIP

已卖:4194份资源

院士

67%

还不是VIP/贵宾

-

TA的文库  其他...

Bayesian NewOccidental

Spatial Data Analysis

东西方数据挖掘

威望
0
论坛币
50288 个
通用积分
83.6306
学术水平
253 点
热心指数
300 点
信用等级
208 点
经验
41518 点
帖子
3256
精华
14
在线时间
766 小时
注册时间
2006-5-4
最后登录
2022-11-6

楼主
Lisrelchen 发表于 2015-2-5 23:26:20 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Abstract
RFM (Recency, Frequency, Monetary) analysis is a method to identify high-response customers in
marketing promotions, and to improve overall response rates, which is well known and is widely applied today. Less widely understood is the value of applying RFM scoring to a customer database and measuring customer profitability. RFM analysis is considered significant also for the banks and their specific units like e-banking. A customer who has visited an e-banking site Recently (R) and Frequently (F) and created a lot of Monetary Value (M) through payment and standing orders is very likely to visit and make payments again. After evaluation of the customer’s behaviour using specific RFM criteria the RFM score is correlated to the bank interest, with a high RFM score being more beneficial to the bank currently as well as in the future. Data mining methods can be considered as tools enhancing the bank RFM analysis of the customers in total as well as specific groups like the users of e-banking.

本帖隐藏的内容

Customer Clustering using RFM analysis.pdf (102.57 KB)





二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:clementine Clustering Case study clementin Analysis understood customers Recently database identify

本帖被以下文库推荐

沙发
zhouyang1764 在职认证  发表于 2015-2-6 00:10:45
路过看看

藤椅
sqy 发表于 2015-2-6 14:23:08
ding!!!!!!!!!!!!!!!!!!!!!!!!!

板凳
skyman190 发表于 2015-2-10 22:18:42
看看~~~~

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2026-1-9 03:52