楼主: Lisrelchen
4785 32

Combining Pattern Classifiers(Using Matlab), 2nd Edition [推广有奖]

  • 0关注
  • 62粉丝

VIP

已卖:4194份资源

院士

67%

还不是VIP/贵宾

-

TA的文库  其他...

Bayesian NewOccidental

Spatial Data Analysis

东西方数据挖掘

威望
0
论坛币
50288 个
通用积分
83.6306
学术水平
253 点
热心指数
300 点
信用等级
208 点
经验
41518 点
帖子
3256
精华
14
在线时间
766 小时
注册时间
2006-5-4
最后登录
2022-11-6

楼主
Lisrelchen 发表于 2015-3-28 00:31:03 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Combining Pattern Classifiers 2nd Edition
Methods and Algorithms


Book Description

A unified, coherent treatment of current classifier ensemble methods, from fundamentals of pattern recognition to ensemble feature selection, now in its second edition

The art and science of combining pattern classifiers has flourished into a prolific discipline since the first edition of Combining Pattern Classifiers was published in 2004. Dr. Kuncheva has plucked from the rich landscape of recent classifier ensemble literature the topics, methods, and algorithms that will guide the reader toward a deeper understanding of the fundamentals, design, and applications of classifier ensemble methods.
Book Details
Publisher:Wiley
By:Ludmila I. Kuncheva
ISBN:978-1-118-31523-1
Year:2014
Pages:384
Language:English
File size:8.9 MB
File format:PDF

本帖隐藏的内容

Combining Pattern Classifiers, 2nd Edition.pdf (8.51 MB, 需要: 25 个论坛币)





  • http://pages.bangor.ac.uk/~mas00a/
  • http://ca.wiley.com/WileyCDA/WileyTitle/productCd-1118315235.html

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:classifiers classifier combining Edition Pattern discipline published coherent current methods

本帖被以下文库推荐

沙发
jhmath(未真实交易用户) 在职认证  发表于 2015-3-28 00:39:25 来自手机

Description

A unified, coherent treatment of current classifier ensemble methods, from fundamentals of pattern recognition to ensemble feature selection, now in its second edition

The art and science of combining pattern classifiers has flourished into a prolific discipline since the first edition ofCombining Pattern Classifiers was published in 2004. Dr. Kuncheva has plucked from the rich landscape of recent classifier ensemble literature the topics, methods, and algorithms that will guide the reader toward a deeper understanding of the fundamentals, design, and applications of classifier ensemble methods.

Thoroughly updated, with MATLAB® code and practice data sets throughout, Combining Pattern Classifiers includes:

• Coverage of Bayes decision theory and experimental comparison of classifiers

• Essential ensemble methods such as Bagging, Random forest, AdaBoost, Random subspace, Rotation forest, Random oracle, and Error Correcting Output Code, among others

• Chapters on classifier selection, diversity, and ensemble feature selection

With firm grounding in the fundamentals of pattern recognition, and featuring more than 140 illustrations, Combining Pattern Classifiers, Second Edition is a valuable reference for postgraduate students, researchers, and practitioners in computing and engineering.


http://ca.wiley.com/WileyCDA/WileyTitle/productCd-1118315235.html

藤椅
auirzxp(未真实交易用户) 学生认证  发表于 2015-3-28 00:41:16

Decision Tree using Matlab

提示: 作者被禁止或删除 内容自动屏蔽

板凳
xiaohulu99(未真实交易用户) 发表于 2015-3-28 01:40:29

Naive Bayes in Matlab

  1. %---------------------------------------------------------%
  2. C = naive_bayes_train([x y], labels);
  3. la = naive_bayes_classify(C,[x y]);
  4. %---------------------------------------------------------%
  5. %---------------------------------------------------------%
  6. function C = naive_bayes_train(data, labels)
  7. % --- train parametric NB classifier
  8. for i = 1:max(labels)
  9. c_index = labels == i;
  10. C(i).prior = mean(c_index);
  11. C(i).mean = mean(data(c_index,:),1);
  12. if sum(c_index) > 1 % class with 1 object
  13. C(i).std = std(data(c_index,:));
  14. else
  15. C(i).std = zeros(1,size(data,2));
  16. end
  17. end
  18. %---------------------------------------------------------%
  19. %---------------------------------------------------------%
  20. function labels = naive_bayes_classify(C, data)
  21. % --- classify with the trained NB classifier
  22. g = zeros(numel(C),size(data,1));
  23. for i = 1:numel(C)
  24. Ms = repmat(C(i).mean,size(data,1),1);
  25. Ss = repmat(C(i).std,size(data,1),1);
  26. t = 1./Ss .* exp(-(data - Ms).ˆ2 ./(2* Ss.ˆ2));
  27. g(i,:) = prod(t') * C(i).prior;
  28. end
  29. [˜ ,labels] = max(g); labels = labels(:);
  30. %---------------------------------------------------------%
复制代码

已有 1 人评分论坛币 收起 理由
Nicolle + 20 奖励积极上传好的资料

总评分: 论坛币 + 20   查看全部评分

报纸
Nicolle(未真实交易用户) 学生认证  发表于 2015-3-28 02:14:23

Multi-Layer Perceptron in Matlab

提示: 作者被禁止或删除 内容自动屏蔽

地板
Nicolle(未真实交易用户) 学生认证  发表于 2015-3-28 02:21:33
提示: 作者被禁止或删除 内容自动屏蔽

7
Nicolle(未真实交易用户) 学生认证  发表于 2015-3-28 02:58:35
提示: 作者被禁止或删除 内容自动屏蔽

8
fhc2010(真实交易用户) 发表于 2015-3-28 03:08:12
Thanks for sharing

9
lhf8059(真实交易用户) 发表于 2015-3-28 07:34:34
看看!

10
lm972(真实交易用户) 发表于 2015-3-28 08:06:00
谢谢分享

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2026-1-9 03:26