楼主: ukyo
1857 0

Introduction To Mathematical Finance  关闭 [推广有奖]

  • 0关注
  • 0粉丝

已卖:116份资源

本科生

34%

还不是VIP/贵宾

-

威望
0
论坛币
178 个
通用积分
0.1202
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
401 点
帖子
39
精华
0
在线时间
128 小时
注册时间
2005-10-9
最后登录
2022-10-22

楼主
ukyo 发表于 2008-9-26 12:28:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

 

比较基础的书

 

PROLOGUE TO INTRODUCTION TO

MATHEMATICAL FINANCE xiii

1 SET 1

1.1 Sample sets 1

1.2 Operations with sets 3

1.3 Various relations 7

1.4 Indicator 13

Exercises 17

2 PROBABILITY 20

2.1 Examples of probability 20

2.2 Definition and illustrations 24

2.3 Deductions from the axioms 31

2.4 Independent events 35

2.5 Arithmetical density 39

Exercises 42

3 COUNTING 46

3.1 Fundamental rule 46

3.2 Diverse ways of sampling 49

3.3 Allocation models; binomial coefficients 55

3.4 How to solve it 62

Exercises 70

vii

viii Contents

Contents

4 RANDOM VARIABLES 74

4.1 What is a random variable? 74

4.2 How do random variables come about? 78

4.3 Distribution and expectation 84

4.4 Integer-valued random variables 90

4.5 Random variables with densities 95

4.6 General case 105

Exercises 109

APPENDIX 1: BOREL FIELDS AND GENERAL

RANDOM VARIABLES 115

5CONDITIONING AND INDEPENDENCE 117

5.1 Examples of conditioning 117

5.2 Basic formulas 122

5.3 Sequential sampling 131

5.4 P´olya’s urn scheme 136

5.5 Independence and relevance 141

5.6 Genetical models 152

Exercises 157

6 MEAN, VARIANCE, AND TRANSFORMS 164

6.1 Basic properties of expectation 164

6.2 The density case 169

6.3 Multiplication theorem; variance and covariance 173

6.4 Multinomial distribution 180

6.5 Generating function and the like 187

Exercises 195

7 POISSON AND NORMAL DISTRIBUTIONS 203

7.1 Models for Poisson distribution 203

7.2 Poisson process 211

7.3 From binomial to normal 222

7.4 Normal distribution 229

7.5 Central limit theorem 233

7.6 Law of large numbers 239

Exercises 246

APPENDIX 2: STIRLING’S FORMULA AND

DE MOIVRE–LAPLACE’S THEOREM 251

Contents ix

8 FROM RANDOM WALKS TO MARKOV CHAINS 254

ix

8 FROM RANDOM WALKS TO MARKOV CHAINS 254

8.1 Problems of the wanderer or gambler 254

8.2 Limiting schemes 261

8.3 Transition probabilities 266

8.4 Basic structure of Markov chains 275

8.5 Further developments 284

8.6 Steady state 291

8.7 Winding up (or down?) 303

Exercises 314

APPENDIX 3: MARTINGALE 325

9 MEAN-VARIANCE PRICING MODEL 329

9.1 An investments primer 329

9.2 Asset return and risk 331

9.3 Portfolio allocation 335

9.4 Diversification 336

9.5 Mean-variance optimization 337

9.6 Asset return distributions 346

9.7 Stable probability distributions 348

Exercises 351

APPENDIX 4: PARETO AND STABLE LAWS 355

10 OPTION PRICING THEORY 359

10.1 Options basics 359

10.2 Arbitrage-free pricing: 1-period model 366

10.3 Arbitrage-free pricing: N-period model 372

10.4 Fundamental asset pricing theorems 376

Exercises 377

N-period model 372

10.4 Fundamental asset pricing theorems 376

Exercises 377

GENERAL REFERENCES 379

ANSWERS TO PROBLEMS 381

VALUES OF THE STANDARD NORMAL

DISTRIBUTION FUNCTION 393

INDEX 397

 

  250720.pdf (9.15 MB, 需要: 2 个论坛币)

 


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Mathematical introduction mathematica troduction Mathematic Finance Mathematical introduction

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jr
拉您进交流群
GMT+8, 2026-1-5 15:22