楼主: 博弈论379
2872 0

[英文文献] A Notion of Consistent Rationalizability - Between Weak and Pearce's Extens... [推广有奖]

  • 0关注
  • 0粉丝

等待验证会员

学前班

0%

还不是VIP/贵宾

-

威望
0
论坛币
0 个
通用积分
0
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
10 点
帖子
0
精华
0
在线时间
0 小时
注册时间
2020-9-17
最后登录
2020-9-17

楼主
博弈论379 发表于 2004-5-24 14:10:18 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
英文文献:A Notion of Consistent Rationalizability - Between Weak and Pearce's Extens...
英文文献作者:Licun Xue
英文文献摘要:
Ben-Porath (1997) characterizes the strategies consistent with common certainty of rationality (CCR) and the origin of a generic game of perfect information. More generally, the notion of "weak extensive form rationalizability" (weak EFR) captures the implications initial CCR in an extensive form game. We go one step further by ascertaining at which additional information sets initial CCR can be maintained "consistently". Our consistency notion has two aspects: we examine whether there is "internal consistency" in assuming CCR at a given collection of information sets by using Battigalli and Siniscalchi's (1999) recent result while we introduce "external consistency" to account for all reachable information sets. For a class of games, including all belief- consistent games [cf. Reny (1993)], we identify a unique collection of information sets and hence a unique set of strategy profiles; moreover, we show that in this case our notion is outcome-equivalent to Pearce's (1984) EFR. But in general out notion is between weak and Pearce's EFR.

Ben-Porath(1997)描述了符合共同理性确定性(CCR)的策略和完全信息一般博弈的起源。更一般地,“弱扩展形式合理化”(弱EFR)的概念捕获了扩展形式博弈中初始CCR的含义。通过确定在哪些附加信息集初始CCR可以被“一致地”维护,我们更进一步。我们的一致性概念有两个方面:我们使用Battigalli和Siniscalchi(1999)的最新结果来检验在给定的信息集上假设CCR是否存在“内部一致性”,同时我们引入“外部一致性”来解释所有可达信息集。为一类游戏,包括所有信念一致的游戏[cf。Reny(1993)],我们确定了一套独特的信息集,因此一套独特的战略概况;此外,我们证明在这种情况下,我们的概念是结果-等价于Pearce(1984)的EFR。但总的来说,out的概念介于weak和Pearce的EFR之间。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝


您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-28 21:01