楼主: hyq533
1741 2

[面板数据求助] How to get marginal effects on joint prob and conduct fixed effects using gsem? [推广有奖]

  • 0关注
  • 0粉丝

博士生

29%

还不是VIP/贵宾

-

威望
0
论坛币
80 个
通用积分
23.9002
学术水平
4 点
热心指数
9 点
信用等级
2 点
经验
895 点
帖子
129
精华
0
在线时间
350 小时
注册时间
2008-2-14
最后登录
2020-8-9

楼主
hyq533 发表于 2015-7-26 15:00:33 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Dear all,


I have two questions:


1) I am trying to estimate the marginal effects using gsem, with probit as the option, do you know which command shall I use?


2) I also want to control for year and country fixed effects, can we directly put in the country or year dummies? Is there any problem in doing so?


My detailed problem is as follows:


I want to know whether international media shaming has effects on improving political rights, and whether government increases terror to offset the improvement in political rights, so I specified my models below:

  1. global X = "l.cat_rat l.ccpr_rat l.democratic l.C_lgdppc l.C_lpop l.Civilwar2 l.War"
  2. gsem (PIRI_2_increase <- l.Media_ai_tot l(1/3).PIRI_2 \$X  i.year i.idcode, family(binomial) link(probit))(polrt_decline <- l(2).Media_ai_tot l.polrt \$X  i.year i.idcode, family(binomial) link(probit)) (PIRI_2_increase <- l.polrt l(1/3).PIRI_2 \$X  i.year i.idcode, family(binomial) link(probit)) (Media_ai_tot <- l.polrt i.year i.idcode, regress) (polrt_decline <- l(1/3).PIRI_2 l.polrt \$X  i.year i.idcode, family(binomial) link(probit)), nocaps
复制代码



PIRI_2_increase is an indicator for whether terror has increased, Media_ai_tot is the level of international media shaming, polrt_decline is an indicator for whether political rights has improved (higher scores of PIRI and polirt mean worse cases). X are other covariates.


The first equation is to estimate the effects of media shaming on terror (probit model), the second is to estimate the effects of media shaming on political rights (probit model), the third is to estimate the effects of political rights on terror (probit model), the fourth is to estimate the effects of previous political rights on the amount of shaming (OLS), and the fifth is to estimate the effects of terror on political rights (probit).


I am particularly interested in knowing the marginal effects of media shaming in equation 1 and 2. I have figured out how to get the marginal effects for single equations.


For example, for equation 1:


  1. estpost margins, dydx(l.Media_ai_tot) atmeans predict(pr outcome(PIRI_2_increase))
复制代码


I don't know how to get the joint probability of equation 1 and equation 2,
that is, I want to know the marginal effects of shaming (l.Media_ai_tot) on the joint probability of terror increase (PIRI_2_increase=1 in equation 1) and political rights improvement (polrt_decline=1 in equation 2).


I would appreciate any help you could offer.

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:fixed effect Marginal effects conduct Effect political detailed directly conduct command

已有 1 人评分经验 收起 理由
niuniuyiwan + 60 鼓励积极发帖讨论

总评分: 经验 + 60   查看全部评分

既然选择了远方,便只顾风雨兼程

沙发
hyq533 发表于 2015-7-26 16:11:31
From Stata's help document, it seems they do not have an option of predicting the joint probability. http://www.stata.com/manuals13/sempredictaftergsem.pdf

藤椅
hyq533 发表于 2015-7-26 16:17:38
Just found out that we can use a bivariate probit model to get the joint probability, it works well, but the only problem is that we miss the information of the other 3 equations:

  1. biprobit (f.PIRI_2_increase <- l.Media_ai_tot l(1/3).PIRI_2 \$X i.year) (f.polrt_decline <- l.Media_ai_tot l.polrt \$X i.year) if year>=1984&year<=2001, vce(robust)

  2. estpost margins, dydx(l.Media_ai_tot) atmeans predict(p11)
复制代码



已有 1 人评分经验 学术水平 收起 理由
niuniuyiwan + 60 + 1 分析的有道理

总评分: 经验 + 60  学术水平 + 1   查看全部评分

既然选择了远方,便只顾风雨兼程

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2026-1-16 23:53