Furstenberg 与其合作者随后意识到这一新方法所具有的强劲潜力可以用来确立许多类型的回归定理, 后者 (通过对应原理) 又可以产生一些高度非平凡的组合定理。 顺着这一思路, Furstenberg、 Katznelson 及其他人获得了 Szemerédi 定理的许多变种和推广, 比如高维空间的变种, 他们甚至确立了 Hales-Jewett 定理的密度版本 (这是 van der Waerden 定理的一个非常有力及抽象的推广)。 这些通过无穷各态历经理论技巧所获得的结果中的许多,人们至今也不知道是否存在 “初等” 证明, 这证实了这种方法的力量。 不仅如此, 作为这些努力的一个有价值的副产品,人们还获得了对保测体系结构分类的深刻得多的理解。 特别是, 人们意识到对于许多类型的回归问题,一个任意体系的渐进回归性质几乎完全由该体系的一个特殊因子所控制, 这个因子被称为该体系的 (最小) 特征因子[注十二]。 确定各类回归中这一特征因子的精确性质于是便成为了研究的焦点,因为这将导致有关极限行为的更精确的信息 (特别是, 它将显示与多重回归有关的某些渐进表达式实际上收敛于一个极限, 这在 Furstenberg 的原始论证中是悬而未决的)。 Furstenberg 和 Weiss 的反例, 及 Conze 和 Lesigne 的结果, 逐渐导致一个结论, 即这些特征因子应该由一个非常特殊的 (代数型的) 保测体系, 即与幂零群 (nilpotent group) 相联系的零系统 (nilsystem), 来描述。这些结论的集大成者是对这些因子给予精确及严格描述的技术上引人注目的 Host 和 Kra 的论文 (及随后的 Ziegler 的论文), 它在得到其它一些结果的同时解决了刚才提到的渐进多重回归平均的收敛性问题。这些特征因子所扮演的核心角色相当充分地表明了存在于 (由零系统所表示的) 结构与 (由某些技术型的 “混合” 性质所刻划的) 随机性之间的二向性 (dichotomy), 以及一种深刻的见解, 即 Szemerédi 定理的力量实际上是源于这一二向性。 Host-Kra 分析的另一个值得一提的特点是平均概念在 “立方体” 或 “超平行体” 中令人瞩目的出现, 出于一些原因,它比与算术序列有关的多重回归平均更易于分析。 [译者注: 1. Hales-Jewett 定理的大致内容是: 如果用 m 种颜色来给一个边长为 n 的多维点阵着色, 那么只要点阵的维数足够高,就必定存在同色的长度为 n 的行、 列、 对角线等。 2. “dichotomy” 在数学与逻辑中通常译为二分法,不过在本文中似以译成 “二向性” 或 “二重性” 为佳, 因为 “二分法” 这一译名过于强调两种性质之间的区分而非联系。]


雷达卡
京公网安备 11010802022788号







