楼主: 邢不行
226235 608

[其他] 【量化小讲堂 - Python、Pandas系列】往期目录汇总帖     [推广有奖]

回帖奖励 640 个论坛币 回复本帖可获得 1 个论坛币奖励! 每人限 1 次
121
护神符 发表于 2016-12-13 16:07:27
赞赞赞

122
orcwang 发表于 2016-12-14 09:14:14
好好好

123
franky_sas 发表于 2016-12-15 22:09:44

124
LBF_pal 发表于 2016-12-20 10:09:56
感谢楼主,学习则个。

125
Captain-CUI 学生认证  发表于 2016-12-21 20:44:50
客初 发表于 2016-11-24 17:09
以前加精的都是每个专题,汇总贴以前太少,直到现在比较多了才加。
最近是不是没有继续更新了???好期待

126
客初 企业认证  学生认证  发表于 2016-12-21 22:45:06
Captain-CUI 发表于 2016-12-21 20:44
最近是不是没有继续更新了???好期待
最近的确没有,我找时间问问邢不行去

127
sharpwood2013 发表于 2016-12-22 10:29:11
谢谢。学习一下

128
小小飞侠1992 发表于 2017-1-1 09:02:58 来自手机
谢谢分享

129
rushwoo 发表于 2017-1-3 09:18:58
---实战---


为了检验EMV策略在A股的实际效果,本文将该策略在所有A股都运行一遍。由于策略用不同的参数回测结果也不一样,因此对每只股票回测时都遍历一遍参数,选择使超额收益率最大的参数作为该股票的最优参数。具体步骤如下:


一、遍历数据文件夹中所有股票文件的文件名,得到股票代码列表

用python提取股票历史数据文件夹下每个股票对应的文件名(即股票代码)并存放到一个列表里,这样就得到了所有A股的代码列表。

接着遍历股票代码的列表,读取每只股票的历史数据。


二、计算股票的后复权价格

在读取某只股票的历史数据后,为了回测结果的可靠性,本文重新计算了复权后的开盘价、收盘价、最高价和最低价,后面计算指标值和涨跌幅都以复权后的数据为基础。有些上市不久的股票由于时间太短可能不具有代表性,因此本文在运行策略之前会先判断该股票上市至今的交易天数,剔除掉上市不到1年半的股票。


三、遍历参数进行回测

接着就是计算EMV指标并给出每天的信号了,在计算EMV和MAEMV时本文用到参数范围分别是n取16到26,间隔为2,m取20到25,间隔为1。即遍历该范围内的所有参数组合,每一参数组都会输出对应的每天的信号,根据买卖信号,可以得到每天的仓位,进而可以得到资金曲线及相关的回测指标(相关内容可参考量化小讲堂https://bbs.pinggu.org/thread-4745852-1-1.html)。在得到所有参数的回测结果后,根据超额收益率大小进行排序,选择使超额收益最大的参数作为该股票的最优参数,并将相应数据存入csv文件。


最后,在遍历完所有A股后,我们可以得到每只股票在最优参数组下使用EMV策略的回测结果,并和股票的年化收益及最大回撤做了一下对比。---实战---


为了检验EMV策略在A股的实际效果,本文将该策略在所有A股都运行一遍。由于策略用不同的参数回测结果也不一样,因此对每只股票回测时都遍历一遍参数,选择使超额收益率最大的参数作为该股票的最优参数。具体步骤如下:


一、遍历数据文件夹中所有股票文件的文件名,得到股票代码列表

用python提取股票历史数据文件夹下每个股票对应的文件名(即股票代码)并存放到一个列表里,这样就得到了所有A股的代码列表。

接着遍历股票代码的列表,读取每只股票的历史数据。


二、计算股票的后复权价格

在读取某只股票的历史数据后,为了回测结果的可靠性,本文重新计算了复权后的开盘价、收盘价、最高价和最低价,后面计算指标值和涨跌幅都以复权后的数据为基础。有些上市不久的股票由于时间太短可能不具有代表性,因此本文在运行策略之前会先判断该股票上市至今的交易天数,剔除掉上市不到1年半的股票。


三、遍历参数进行回测

接着就是计算EMV指标并给出每天的信号了,在计算EMV和MAEMV时本文用到参数范围分别是n取16到26,间隔为2,m取20到25,间隔为1。即遍历该范围内的所有参数组合,每一参数组都会输出对应的每天的信号,根据买卖信号,可以得到每天的仓位,进而可以得到资金曲线及相关的回测指标(相关内容可参考量化小讲堂https://bbs.pinggu.org/thread-4745852-1-1.html)。在得到所有参数的回测结果后,根据超额收益率大小进行排序,选择使超额收益最大的参数作为该股票的最优参数,并将相应数据存入csv文件。


最后,在遍历完所有A股后,我们可以得到每只股票在最优参数组下使用EMV策略的回测结果,并和股票的年化收益及最大回撤做了一下对比。---实战---


为了检验EMV策略在A股的实际效果,本文将该策略在所有A股都运行一遍。由于策略用不同的参数回测结果也不一样,因此对每只股票回测时都遍历一遍参数,选择使超额收益率最大的参数作为该股票的最优参数。具体步骤如下:


一、遍历数据文件夹中所有股票文件的文件名,得到股票代码列表

用python提取股票历史数据文件夹下每个股票对应的文件名(即股票代码)并存放到一个列表里,这样就得到了所有A股的代码列表。

接着遍历股票代码的列表,读取每只股票的历史数据。


二、计算股票的后复权价格

在读取某只股票的历史数据后,为了回测结果的可靠性,本文重新计算了复权后的开盘价、收盘价、最高价和最低价,后面计算指标值和涨跌幅都以复权后的数据为基础。有些上市不久的股票由于时间太短可能不具有代表性,因此本文在运行策略之前会先判断该股票上市至今的交易天数,剔除掉上市不到1年半的股票。


三、遍历参数进行回测

接着就是计算EMV指标并给出每天的信号了,在计算EMV和MAEMV时本文用到参数范围分别是n取16到26,间隔为2,m取20到25,间隔为1。即遍历该范围内的所有参数组合,每一参数组都会输出对应的每天的信号,根据买卖信号,可以得到每天的仓位,进而可以得到资金曲线及相关的回测指标(相关内容可参考量化小讲堂https://bbs.pinggu.org/thread-4745852-1-1.html)。在得到所有参数的回测结果后,根据超额收益率大小进行排序,选择使超额收益最大的参数作为该股票的最优参数,并将相应数据存入csv文件。


最后,在遍历完所有A股后,我们可以得到每只股票在最优参数组下使用EMV策略的回测结果,并和股票的年化收益及最大回撤做了一下对比。

130
shidong828 发表于 2017-1-9 17:26:07 来自手机
邢不行 发表于 2015-10-23 15:06
引言:

本系列帖子“量化小讲堂”,通过实际的案例让大家知道如何使用Python、pandas进行金融数据处理,案 ...

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jr
拉您进交流群
GMT+8, 2026-1-17 04:55