楼主: oliyiyi
1073 1

L1 Regularized Least Squares for Support Recovery of High Dimensional [推广有奖]

版主

已卖:2994份资源

泰斗

1%

还不是VIP/贵宾

-

TA的文库  其他...

计量文库

威望
7
论坛币
66105 个
通用积分
31671.0967
学术水平
1454 点
热心指数
1573 点
信用等级
1364 点
经验
384134 点
帖子
9629
精华
66
在线时间
5508 小时
注册时间
2007-5-21
最后登录
2025-7-8

初级学术勋章 初级热心勋章 初级信用勋章 中级信用勋章 中级学术勋章 中级热心勋章 高级热心勋章 高级学术勋章 高级信用勋章 特级热心勋章 特级学术勋章 特级信用勋章

楼主
oliyiyi 发表于 2015-11-26 18:08:44 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
L1 Regularized Least Squares for Support Recovery of High Dimensional Single Index Models with Gaussian Designs. (arXiv:1511.08102v1 [math.ST])6h
[/url][url=]






由 Matey Neykov, Jun S. Liu, Tianxi Cai[url=][/url] 通过 Statistics authors/titles recent submissions[url=][/url]




It is known that for a certain class of single index models (SIM) $Y = f(\boldsymbol{X}^{\intercal}\boldsymbol{\beta}, \varepsilon)$, support recovery is impossible when $\boldsymbol{X} \sim N(0, \mathbb{I}_p)$ and the rescaled sample size $\frac{n}{s \log(p-s)}$ is below a critical threshold. Recently, optimal algorithms based on Sliced Inverse Regression (SIR) were suggested. These algorithms work provably under the assumption that the design matrix $\boldsymbol{X}$ comes from an i.i.d. Gaussian distribution. In the present paper we analyze algorithms based on covariance screening and least squares with $L_1$ penalization (i.e. LASSO) and demonstrate that they can also enjoy optimal (up to a scalar) rescaled sample size in terms of support recovery, albeit under slightly different assumptions on $f$ and $\varepsilon$ compared to the SIR based algorithms. Furthermore, we show more generally, that LASSO succeeds in recovering the signed support of $\boldsymbol{\beta}$ if $\boldsymbol{X} \sim N(0, \boldsymbol{\Sigma})$, and the covariance $\boldsymbol{\Sigma}$ satisfies the irrepresentable condition. Our work extends existing results on the support recovery of LASSO for the linear model, to a certain class of SIM.


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Dimensional dimension Recovery Recover Squares recovery support single

缺少币币的网友请访问有奖回帖集合
https://bbs.pinggu.org/thread-3990750-1-1.html

沙发
seahhj 发表于 2015-11-26 21:19:21
thanks for sharing

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-31 22:18