楼主: 纯屌丝
10257 18

[回归分析求助] ologit模型求边际效应的命令是什么 [推广有奖]

  • 0关注
  • 2粉丝

已卖:1份资源

博士生

40%

还不是VIP/贵宾

-

威望
0
论坛币
882 个
通用积分
22.4743
学术水平
5 点
热心指数
3 点
信用等级
0 点
经验
2178 点
帖子
99
精华
0
在线时间
395 小时
注册时间
2013-1-17
最后登录
2022-2-16

楼主
纯屌丝 发表于 2015-12-18 09:55:28 |AI写论文
10论坛币
如题,ologit模型求边际效应的命令是什么?谢谢大家了。

关键词:ologit模型 logit模型 ologit logit 边际效应 模型

沙发
xddlovejiao1314 学生认证  发表于 2015-12-18 10:05:22
使用margins命令即可。具体可help margins。祝好运~
已有 1 人评分经验 热心指数 收起 理由
夏目贵志 + 5 + 1 热心帮助其他会员

总评分: 经验 + 5  热心指数 + 1   查看全部评分

藤椅
wxylzh 发表于 2016-11-10 20:26:21
谢谢楼上的,已解决

板凳
平凡的平凡 发表于 2017-1-10 22:21:14
wxylzh 发表于 2016-11-10 20:26
应该mfx命令
不是两个都可以么?

报纸
蓝色 发表于 2017-1-11 07:55:58
为什么不看帮助和手册?????????


Title

    [R] ologit postestimation -- Postestimation tools for ologit


Description

    The following postestimation commands are available after ologit:

    Command              Description
    ---------------------------------------------------------------------------------------------
        contrast         contrasts and ANOVA-style joint tests of estimates
        estat ic         Akaike's and Schwarz's Bayesian information criteria (AIC and BIC)
        estat summarize  summary statistics for the estimation sample
        estat vce        variance-covariance matrix of the estimators (VCE)
        estat (svy)      postestimation statistics for survey data
        estimates        cataloging estimation results
    (1) forecast         dynamic forecasts and simulations
        lincom           point estimates, standard errors, testing, and inference for linear
                           combinations of coefficients
        linktest         link test for model specification
    (2) lrtest           likelihood-ratio test
        margins          marginal means, predictive margins, marginal effects, and average
                           marginal effects
        marginsplot      graph the results from margins (profile plots, interaction plots, etc.)
        nlcom            point estimates, standard errors, testing, and inference for nonlinear
                           combinations of coefficients
        predict          predictions, residuals, influence statistics, and other diagnostic
                           measures
        predictnl        point estimates, standard errors, testing, and inference for generalized
                           predictions
        pwcompare        pairwise comparisons of estimates
        suest            seemingly unrelated estimation
        test             Wald tests of simple and composite linear hypotheses
        testnl           Wald tests of nonlinear hypotheses
    ---------------------------------------------------------------------------------------------
    (1) forecast is not appropriate with mi or svy estimation results.
    (2) lrtest is not appropriate with svy estimation results.


Syntax for predict

        predict [type] {stub* | newvar | newvarlist} [if] [in] [, statistic outcome(outcome)
                nooffset]

        predict [type] {stub* | newvarlist} [if] [in] , scores

    statistic          Description
    ---------------------------------------------------------------------------------------------
    Main
      pr               predicted probabilities; the default
      xb               linear prediction
      stdp             standard error of the linear prediction
    ---------------------------------------------------------------------------------------------
    If you do not specify outcome(), pr (with one new variable specified) assumes outcome(#1).
    You specify one or k new variables with pr, where k is the number of outcomes.
    You specify one new variable with xb and stdp.
    These statistics are available both in and out of sample; type predict ... if e(sample) ...
      if wanted only for the estimation sample.


Menu for predict

    Statistics > Postestimation > Predictions, residuals, etc.


Options for predict

        +------+
    ----+ Main +---------------------------------------------------------------------------------

    pr, the default, calculates the predicted probabilities.  If you do not also specify the
        outcome() option, you specify k new variables, where k is the number of categories of the
        dependent variable.  Say that you fit a model by typing ologit result x1 x2, and result
        takes on three values.  Then you could type predict p1 p2 p3 to obtain all three
        predicted probabilities.  If you specify the outcome() option, you must specify one new
        variable.  Say that result takes on the values 1, 2, and 3.  Typing predict p1,
        outcome(1) would produce the same p1.

    xb calculates the linear prediction.  You specify one new variable, for example, predict
        linear, xb.  The linear prediction is defined, ignoring the contribution of the estimated
        cutpoints.

    stdp calculates the standard error of the linear prediction.  You specify one new variable,
        for example, predict se, stdp.

    outcome(outcome) specifies for which outcome the predicted probabilities are to be
        calculated.  outcome() should contain either one value of the dependent variable or one
        of #1, #2, ..., with #1 meaning the first category of the dependent variable, #2 meaning
        the second category, etc.

    nooffset is relevant only if you specified offset(varname) for ologit.  It modifies the
        calculations made by predict so that they ignore the offset variable; the linear
        prediction is treated as xb rather than as xb + offset.

    scores calculates equation-level score variables.  The number of score variables created will
        equal the number of outcomes in the model.  If the number of outcomes in the model was k,
        then

        The first new variable will contain the derivative of the log likelihood with respect to
        the regression equation.

        The other new variables will contain the derivative of the log likelihood with respect to
        the cutpoints.


Examples

    Setup
        . webuse fullauto
        . ologit rep77 i.foreign length mpg

    Predicted probabilities for each of the five outcomes
        . predict poor fair avg good exc

    Average marginal effects on the probability of an excellent repair record
        . margins, dydx(*) predict(outcome(5))


    Report information criteria
        . estat ic

已有 1 人评分论坛币 学术水平 热心指数 信用等级 收起 理由
wxylzh + 5 + 3 + 3 + 3 精彩帖子

总评分: 论坛币 + 5  学术水平 + 3  热心指数 + 3  信用等级 + 3   查看全部评分

地板
wxylzh 发表于 2017-1-31 16:55:06
平凡的平凡 发表于 2017-1-10 22:21
不是两个都可以么?
是的,两个都可以

7
wxylzh 发表于 2017-1-31 16:58:41
我对此问题也有过疑虑,版主回答的很全面。赞一个

8
lishuyun 发表于 2017-7-13 14:00:57
请问楼主问题解决了吗,我最近在学习这个,但是很疑惑,使用ologit时,我一共有五个分组(被解释变量是五个分组变量),margins,dydx(*)
只给我汇报了一个被解释变量分组的边际效应,请问,能不能收入整体的边际效应

9
yyyue93 发表于 2017-12-17 14:44:48
lishuyun 发表于 2017-7-13 14:00
请问楼主问题解决了吗,我最近在学习这个,但是很疑惑,使用ologit时,我一共有五个分组(被解释变量是五个 ...
我被解释变量是4个有序变量,求有序变量时出现了4组结果,请问要怎么解释啊?

10
yyyue93 发表于 2017-12-17 14:44:53
lishuyun 发表于 2017-7-13 14:00
请问楼主问题解决了吗,我最近在学习这个,但是很疑惑,使用ologit时,我一共有五个分组(被解释变量是五个 ...
我被解释变量是4个有序变量,求有序变量时出现了4组结果,请问要怎么解释啊?

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-30 23:29