楼主: Roccoon
1375 0

[下载]Time Series for Macroeconomics and Finance [推广有奖]

  • 0关注
  • 3粉丝

已卖:1105份资源

博士生

81%

还不是VIP/贵宾

-

威望
0
论坛币
31125 个
通用积分
14.3746
学术水平
3 点
热心指数
1 点
信用等级
1 点
经验
5785 点
帖子
85
精华
0
在线时间
590 小时
注册时间
2008-7-28
最后登录
2024-12-18

楼主
Roccoon 发表于 2009-2-6 20:25:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

Time Series for Macroeconomics and Finance

by John H. Cochrane
Graduate School of Business
University of Chicago

Contents
1 Preface 7
2Whatisatimeseries? 8
3ARMAmodels 10
3.1 Whitenoise ............................ 10
3.2 BasicARMAmodels ....................... 11
3.3 Lagoperatorsandpolynomials ................. 11
3.3.1 ManipulatingARMAswithlagoperators. ....... 12
3.3.2 AR(1) to MA(∞)byrecursivesubstitution....... 13
3.3.3 AR(1) to MA(∞)withlagoperators........... 13
3.3.4 AR(p) to MA(∞), MA(q) to AR(∞), factoring lag
polynomials,andpartialfractions............ 14
3.3.5 Summary of allowed lag polynomial manipulations . . 16
3.4 MultivariateARMAmodels.................... 17
3.5 ProblemsandTricks ....................... 19
4 The autocorrelation and autocovariance functions. 21
4.1 Definitions....... ...................... 21
4.2 Autocovariance and autocorrelation of ARMA processes. . . . 22
4.2.1 Summary ......................... 25

4.3 Afundamentalrepresentation .................. 26
4.4 Admissibleautocorrelationfunctions .............. 27
4.5 Multivariateauto-andcrosscorrelations............. 30
5 Prediction and Impulse-Response Functions 31
5.1 PredictingARMAmodels .................... 32
5.2 Statespacerepresentation.................... 34
5.2.1 ARMAsinvectorAR(1)representation ........ 35
5.2.2 ForecastsfromvectorAR(1)representation....... 35
5.2.3 VARsinvectorAR(1)representation........... 36
5.3 Impulse-responsefunction .................... 37
5.3.1 Factsaboutimpulse-responses.............. 38
6 Stationarity and Wold representation 40
6.1 Definitions....... ...................... 40
6.2 ConditionsforstationaryARMA’s ............... 41
6.3 WoldDecompositiontheorem .................. 43
6.3.1 WhattheWoldtheoremdoesnotsay.......... 45
6.4 The Wold MA(∞) as another fundamental representation . . . 46
7 VARs: orthogonalization, variance decomposition, Granger
causality 48
7.1 OrthogonalizingVARs ...................... 48
7.1.1 Ambiguityofimpulse-responsefunctions ........ 48
7.1.2 Orthogonalshocks .................... 49
7.1.3 Sims orthogonalization–Specifying C(0)........ 50
7.1.4 Blanchard-Quah orthogonalization—restrictions on C(1). 52
7.2 Variancedecompositions ..................... 53
7.3 VAR’sinstatespacenotation .................. 54

7.4 Tricksandproblems: ....................... 55
7.5 GrangerCausality......................... 57
7.5.1 Basicidea ......................... 57
7.5.2 Definition,autoregressiverepresentation ........ 58
7.5.3 Movingaveragerepresentation.............. 59
7.5.4 Univariaterepresentations ................ 60
7.5.5 Effectonprojections ................... 61
7.5.6 Summary ......................... 62
7.5.7 Discussion......................... 63
7.5.8 A warning: why “Granger causality” is not “Causality” 64
7.5.9 Contemporaneouscorrelation .............. 65
8SpectralRepresentation 67
8.1 Factsaboutcomplexnumbersandtrigonometry........ 67
8.1.1 Definitions......................... 67
8.1.2 Addition,multiplication,andconjugation........ 68
8.1.3 Trigonometricidentities ................. 69
8.1.4 Frequency,periodandphase............... 69
8.1.5 Fouriertransforms .................... 70
8.1.6 Whycomplexnumbers? ................. 72
8.2 Spectraldensity.......................... 73
8.2.1 Spectraldensitiesofsomeprocesses........... 75
8.2.2 Spectraldensitymatrix,crossspectraldensity..... 75
8.2.3 Spectraldensityofasum................. 77
8.3 Filtering... ........................... 78
8.3.1 Spectrum of filteredseries ................ 78
8.3.2 Multivariate filteringformula .............. 798.3.3 Spectral density of arbitrary MA(∞) .......... 80
8.3.4 FilteringandOLS .................... 80
8.3.5 Acosineexample..................... 82
8.3.6 Cross spectral density of two filters,andaninterpre-
tationofspectraldensity................. 82
8.3.7 Constructing filters.................... 84
8.3.8 Simsapproximationformula............... 86
8.4 Relation between Spectral, Wold, and Autocovariance repre-
sentations .. ........................... 87
9Spectralanalysisin finite samples 89
9.1 FiniteFouriertransforms..................... 89
9.1.1 Definitions......................... 89
9.2 Bandspectrumregression .................... 90
9.2.1 Motivation......................... 90
9.2.2 Bandspectrumprocedure ................ 93
9.3 Cram´ erorSpectralrepresentation................ 96
9.4 Estimatingspectraldensities................... 98
9.4.1 Fouriertransformsamplecovariances .......... 98
9.4.2 Samplespectraldensity ................. 98
9.4.3 Relation between transformed autocovariances and sam-
pledensity......................... 99
9.4.4 Asymptotic distribution of sample spectral density . . 101
9.4.5 Smoothedperiodogramestimates ............101
9.4.6 Weightedcovarianceestimates..............102
9.4.7 Relation between weighted covariance and smoothed
periodogramestimates ..................103
9.4.8 Variance of filtereddataestimates............1049.4.9 SpectraldensityimpliedbyARMAmodels.......105
9.4.10Asymptoticdistributionofspectralestimates......105
10 Unit Roots 106
10.1RandomWalks ..........................106
10.2Motivationsforunitroots ....................107
10.2.1Stochastictrends .....................107
10.2.2Permanenceofshocks...................108
10.2.3Statisticalissues......................108
10.3Unitrootandstationaryprocesses ...............110
10.3.1Responsetoshocks....................111
10.3.2Spectraldensity......................113
10.3.3Autocorrelation......................114
10.3.4Randomwalkcomponentsandstochastictrends....115
10.3.5Forecasterrorvariances .................118
10.3.6Summary .........................119
10.4 Summary of a(1)estimatesandtests...............119
10.4.1 Near- observational equivalence of unit roots and sta-
tionary processes in finitesamples............119
10.4.2Empiricalworkonunitroots/persistence........121
11 Cointegration 122
11.1 Definition ............. ................122
11.2Cointegratingregressions.....................123
11.3Representationofcointegratedsystem. .............124
11.3.1 Definitionofcointegration ................124
11.3.2MultivariateBeveridge-Nelsondecomposition .....125
11.3.3RankconditiononA(1) .................12511.3.4Spectraldensityatzero .................126
11.3.5Commontrendsrepresentation .............126
11.3.6 Impulse-responsefunction.................128
11.4UsefulrepresentationsforrunningcointegratedVAR’s.....129
11.4.1AutoregressiveRepresentations .............129
11.4.2ErrorCorrectionrepresentation .............130
11.4.3RunningVAR’s......................131
11.5AnExample............................132
11.6Cointegrationwithdriftsandtrends...............134

291211.pdf (754.37 KB, 需要: 2 个论坛币)


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Time Series MacroEcon Economics Economic macroeco 下载 Finance time Series

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-25 16:49