楼主: zhuzhu83
9634 20

[学科前沿] [下载] Smoothing Methods in Statistics [推广有奖]

  • 1关注
  • 2粉丝

已卖:3087份资源

硕士生

32%

还不是VIP/贵宾

-

威望
0
论坛币
10217 个
通用积分
30.3567
学术水平
-3 点
热心指数
2 点
信用等级
2 点
经验
895 点
帖子
42
精华
0
在线时间
174 小时
注册时间
2006-4-30
最后登录
2024-11-19

楼主
zhuzhu83 发表于 2009-4-15 09:31:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
<h2 class="TxtB"><font size="3">高清扫描版,约13M左右</font></h2><h2 class="TxtB"> </h2><h2 class="TxtB"><font size="3">Smoothing Methods in Statistics</font></h2><p class="TxtB"><strong>Series:</strong> springer series in statistics</p><p class="TxtB"><strong>Author:</strong> Simonoff, Jeffrey S</p><p class="TxtB"><strong>About This Book:</strong></p><p class="TxtB">Focussing on applications, this book covers a very broad range, including simple and complex univariate and multivariate density estimation, nonparametric regression estimation, categorical data smoothing, and applications of smoothing to other areas of statistics. It will thus be of particular interest to data analysts, as arguments generally proceed from actual data rather than statistical theory, while the "Background Material" sections will interest statisticians studying the field. Over 750 references allow researchers to find the original sources for more details, and the "Computational Issues" sections provide sources for statistical software that use the methods discussed. Each chapter includes exercises with a heavily computational focus based upon the data sets used in the book, making it equally suitable as a textbook for a course in smoothing.</p><p class="TxtB"><strong>Writtern For:</strong></p><p class="TxtB">Graduate Students, Researchers </p><p class="TxtB"><strong></strong> </p><p class="TxtB"><strong>Contents</strong></p><strong></strong><p class="TxtB"><br/><br/>1. Introduction<br/></p><p class="TxtB">1.1 Smoothing Methods: a Nonparametric-Parametric Compromise<br/>1.2 U ses of Smoothing Methods<br/>1.3 Outline of the Chapters<br/>Background material<br/>Computational issues<br/>Exercises<br/><br/>2. Simple Univariate Density Estimation<br/>2.1 The Histogram<br/>2.2 The Frequency Polygon<br/>2.3 Varying the Bin Width<br/>2.4 The Effectiveness of Simple Density Estimators<br/>Background material<br/>Computational issues<br/>Exercises<br/></p><p class="TxtB">3. Smoother Univariate Density Estimation 40<br/>3.1 Kernel Density Estimation 40<br/>3 2 Problems with Kernel Density Estimation 49<br/>3.3 Adjustments and Improvements to Kernel Density Estimation 53<br/>3.4 Local Likelihood Estimation 64<br/>3.5 Roughness Penalty and Spline-Based Methods 67<br/>3.6 Comparison of Univariate Density Estimators 70<br/>Background material 72<br/>Computational issue 92<br/>Exercises 94<br/></p><p class="TxtB">4. Multivariate Density Estimation<br/>4.1 Simple Density Estimation Methods<br/>4.2 Kernel Density Estimation<br/>4.3 Other Estimators 111<br/>4.4 Dimension Rβduction and Projection Pursuit 117<br/>4 5 The State of Multivariate Density Estimation 121<br/>Background material 123<br/>Computational issues 131<br/>Exercises 132<br/></p><p class="TxtB">5. Nonparametric Regression 134<br/>5.1 Scatter Plot Smoothing and Kernel Regression 134<br/>5.2 Local Polynomial Regression 138<br/>5.3 Bandwidth Selection 151<br/>54 Locally Varying the Bandwidth 154<br/>5 5 Outliers and Autocorrelation 160<br/>5.6 Spline Smoothing 168<br/>5.7 Multiple Predictors and Additive Models 178<br/>58 Comparing Nonparametric Regression Methods 190<br/>Background material 191<br/>Computational issues 210<br/>Exercises 212<br/></p><p class="TxtB">6. Smoothing Ordered Categorica1 Data 215<br/>6.1 Smoothing and Ordered Categorical Data 215<br/>6.2 Smoothing Sparse Multinomials 217<br/>6.3 Smoothing Sparse Contingency Tables 226<br/>6.4 Categorical Data, Regression, and Density Estimation 236<br/>Background material 243<br/>Computational issues 250<br/>Exercises 250<br/></p><p class="TxtB">7. Further Applications of Smoothing 252<br/>7.1 Discriminant Analysis 252<br/>7.2 Goodness-of-Fit Tests 258<br/>7.3 Smoothing-Based Parametric Estimation 261<br/>7.4 The Smoothed Bootstrap 266<br/>Background material 268<br/>Computational issues 273<br/>Exercises 273<br/></p><p class="TxtB">Appendices 275<br/>A. Descriptions of the Data Sets 275<br/>B. More on Computational Issues 288<br/>References 290<br/>Author Index 321<br/>Subject Index 329</p><h2 class="TxtB"> </h2> 315444.rar (10.99 MB, 需要: 10 个论坛币) 本附件包括:
  • smoothing methods in statistics.pdf
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Statistics smoothing statistic Methods Statist particular including interest complex simple

沙发
aipeng(真实交易用户) 发表于 2009-5-18 18:52:00
谢谢LZ

藤椅
justinniy(未真实交易用户) 发表于 2009-10-25 02:55:44
钱不够 下部了

板凳
pbgpbg2003(真实交易用户) 发表于 2009-11-18 22:42:48
多谢了!一定好好学习!

报纸
xiaoqianshufe(真实交易用户) 发表于 2010-1-10 17:50:16
不错,值得下载哦,很清晰

地板
woxinyi(真实交易用户) 发表于 2010-1-10 20:58:44
介绍的不错,花钱下了

7
tlyy1996(未真实交易用户) 发表于 2010-1-10 21:04:00
这本书不错呀!值得读!

8
liuhztang(真实交易用户) 发表于 2010-2-1 14:25:27
这是所需,多谢

9
eve987(未真实交易用户) 发表于 2010-2-2 20:57:17
找了好久了啊。。谢谢楼主了

10
fisher163(真实交易用户) 发表于 2010-3-19 11:49:50
正是要用的 谢谢了啦

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2026-1-3 20:22