楼主: ReneeBK
773 0

Optimization Techniques for Solving Complex Problems [推广有奖]

  • 1关注
  • 62粉丝

VIP

已卖:4898份资源

学术权威

14%

还不是VIP/贵宾

-

TA的文库  其他...

R资源总汇

Panel Data Analysis

Experimental Design

威望
1
论坛币
49640 个
通用积分
55.8137
学术水平
370 点
热心指数
273 点
信用等级
335 点
经验
57805 点
帖子
4005
精华
21
在线时间
582 小时
注册时间
2005-5-8
最后登录
2023-11-26

楼主
ReneeBK 发表于 2016-4-23 22:25:47 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币


Table of ContentsPART I: METHODOLOGIES FOR COMPLEX PROBLEM SOLVING.

1. Generating Automatic Projections by Means of GP (C. Estébanez,and R. Aler).

1.1 Introduction.

1.2 Background.

1.3 Domains.

1.4 Algorithmic Proposal.

1.5 Experimental Analysis.

1.6 Conclusions and Future Work.

References.

2. Neural Lazy Local Learning (J. M. Valls, I. M. Galván, and P. Isasi).

2.1 Introduction.

2.2 LRBNN: Lazy Radial Basis Neural Networks.

2.3 Experimental Framework.

2.4 Conclusions.

References.

3. Optimization by Using GAs with Micropopulations (Y. Sáez).

3.1 Introduction.

3.2 Algorithmic Proposal.

3.3 Experimental Analysis: the Rastrigin Function.

3.4 Conclusions.

References.

4. Analyzing Parallel Cellular Genetic Algorithms (G. Luque, E. Alba, and B. Dorronsoro).

4.1 Introduction.

4.2 Cellular Genetic Algorithms.

4.3 Parallel Models for cGAs.

4.4 Brief Survey on Parallel cGAs.

4.5 Experimental Results.

4.6 Conclusions.

References.

5. Evaluating New Advanced Multiobjective Metaheuristics (A. J. Nebro, J.J. Durillo, F. Luna, and E. Alba).

5.1 Introduction.

5.2 Background.

5.3 Description of the Metaheuristics.

5.4 Experimentation Methodology.

5.5 Computational Results.

5.6 Conclusions and Future Work.

References.

6. Canonical Metaheuristics for DOPs (G. Leguizamón, G. Ordóñez, S. Molina, and E. Alba).

6.1 Introduction.

6.2 Dynamic Optimization Problems.

6.3 Canonical MHs for DOPs.

6.4 Benchmarks.

6.5 Metrics.

6.6 Conclusions.

References.

7. Solving Constrained Optimization Problems with HEAs (C. Cotta, and A. J. Fernández).

7.1 Introduction.

7.2 Strategies for Solving CCOPs with HEAs.

7.3 Study Cases.

7.4 Conclusions.

References.

8. Optimization of Time Series Using Parallel, Adaptive, and Neural Techniques (J. A. Gomez, M. D. Jaraiz, M. A. Vega, and J. M. Sanchez).

8.1 Introduction.

8.2 Time Series Identification.

8.3 Optimization Problem.

8.4 Algorithmic Proposal.

8.5 Experimental Analysis.

8.6 Conclusions and Future Work.

References.

9. Using Reconfigurable Computing to Optimization of Cryptographic Algorithms (J. M. Granado, M. A. Vega, J. M. Sanchez, and J. A. Gomez).

9.1 Introduction.

9.2 Description of the Cryptographic Algorithms.

9.3 Implementation Proposal.

9.4 Results.

9.5 Conclusions.

References.

10. Genetic Algorithms, Parallelism and Reconfigurable Hardware (J. M. Sanchez, M. Rubio, M. A. Vega, and J. A. Gomez).

10.1 Introduction.

10.2 State of the Art.

10.3 FPGA Problem Description and Solution.

10.4 Algorithmic Proposal.

10.5 Experiments and Results.

10.6 Conclusions and Future Work.

References.

11. Divide and Conquer, Advanced Techniques (C. Lóon, G. Miranda, and C. Rodriguez).

11.1 Introduction.

11.2 The Algorithm of the Skeleton.

11.3 Computational Results.

11.4 Conclusions.

References.

12. Tools for Tree Searches: Branch and Bound and A* Algorithms (C. León, G. Miranda, and C. Rodriguez).

12.1 Introduction.

12.2 Background.

12.3 Algorithmic Skeleton for Tree Searches.

12.4 Experimentation Methodology.

12.5 Computational Results.

12.6 Conclusions and Future Work.

References.

13. Tools for Tree Searches: Dynamic Programming (C. León, G. Miranda, and C. Rodriguez).

13.1 Introduction.

13.2 The TopDown.

Approach.

13.3 The BottomUp Approach.

13.4 Automata Theory and Dynamic Programming.

13.5 Parallel Algorithms.

13.6 Dynamic Programming Heuristics.

13.7 Conclusions.

References.

PART II: APPLICATIONS.

14. Automatic Search of Behavior Strategies in Auctions (D. Quintana, and A. Mochón).

14.1 Introduction.

14.2 Evolutionary Techniques in Auctions.

14.3 Theoretical Framework: the Ausubel Auction.

14.4 Algorithmic Proposal.

14.5 Experimental analysis.

14.6 Conclusions and Future Work.

References.

15. Evolving Rules For Local Time Series Prediction (C. Luque, J. M. Valls, and P. Isasi).

15.1 Introduction.

15.2 Evolutionary Algorithms for Generating Prediction Rules.

15.3 Description of the Method.

15.4 Experiments.

15.5 Conclusions.

References.

16. Metaheuristics in Bioinformatics (C. Cotta, A. J. Fernández, J. E. Gallardo, G. Luque, and E. Alba).

16.1 Introduction.

16.2 Metaheuristics and Bioinformatics.

16.3 The DNA Fragment Assembly Problem.

16.4 The Shortest Common Supersequence Problem.

16.5 Conclusions.

References.

17. Optimal Location of Antennae in Telecommunication Networks (G. Molina, F. Chicano, and E. Alba).

17.1 Introduction.

17.2 State of the Art.

17.3 Radio Network Design Problem.

17.4 Optimization Algorithms.

17.5 Basic Problem Instances.

17.6 Advanced Problem Instance.

17.7 Conclusions.

References.

18. Optimization of Image Processing Algorithms Using FPGAs (M. A. Vega, A. Gomez, J. A. Gomez, and J. M. Sanchez).

18.1 Introduction.

18.2 Background.

18.3 Main Features of the FPGAbased Image Processing.

18.4 Advanced Details.

18.5 Experimental Analysis: Software vs. FPGA.

18.6 Conclusions.

References.

19. Application of Cellular Automata Algorithms to the Parallel Simulation of Laser Dynamics (J. L. Guisado, F. Jiménez Morales, J. M. Guerra, F. Fernández de Vega).

19.1 Introduction.

19.2 Background.

19.3 The Problem: Laser Dynamics.

19.4 Algorithmic Proposal.

19.5 Experimental Analysis.

19.6 Parallel Implementation of the Algorithm.

19.7 Conclusions and Future Work.

References.

20. Dense Stereo Disparity from an ALife Standpoint (G. Olague, F. Fernandez, C. B. Perez, and E. Lutton).

20.1 Introduction.

20.2 Infection Algorithm with an Evolutionary Approach.

20.3 Experimental Results.

20.4 Conclusion.

References.

21. Approaches to Multidimensional Knapsack Problems (J. E. Gallardo, C. Cotta, and A. J. Fernández).

21.1 Introduction.

21.2 The Multidimensional Knapsack Problem.

21.3 Hybrid Models.

21.4 Experimental Results.

21.5 Conclusions and Future Work.

References.

22. Greedy Seeding and ProblemSpecific Operators for GAs Solving Strip Packing Problems (C. Salto, J. M. Molina, and E. Alba).

22.1 Introduction.

22.2 Background.

22.3 A Hybrid GA for the 2SPP.

22.4 Genetic Operators for Solving the 2SPP.

22.5 Initial Seeding.

22.6 Implementation.

22.7 Computational Analysis.

22.8 Conclusions.

References.

23. Solving the KCT Problem: Large Scale Neighborhood Search and Solution Merging (C. Blum, and M. Blesa).

23.1 Introduction.

23.2 Hybrid Algorithms for the KCT Problem.

23.3 Experimental Evaluation.

23.4 Summary and Conclusions.

References.

24. Experimental Study of Gabased Schedulers in Dynamic Distributed Computing Environments (F. Xhafa, and J. Carretero).

24.1 Introduction.

24.2 Related Work.

24.3 Independent Job Scheduling Problem.

24.4 Genetic Algorithms for Scheduling in Grid Systems.

24.5 Grid Simulator.

24.6 The Interface for Using Gabased Scheduler with the Grid Simulator.

24.7 Experimental Analysis.

24.8 Conclusions.

References.

25. ROS: Remote Optimization Service (J. GarcíaNieto, F. Chicano, and E. Alba).

25.1 Introduction.

25.2 Background and State of the Art.

25.3 ROS Architecture.

25.4 Information Exchange in ROS.

25.5 XML in ROS.

25.6 Wrappers.

25.7 Evaluation of ROS.

25.8 Conclusions and Future Work.

References.

26. SIRVA, MOSET, TIDESI, ABACUS: Remote Services for Advanced.

Problem Optimization (J. A. Gomez, M. A. Vega, J. M. Sanchez, J. L. Guisado, D. Lombrana, and F. Fernandez).

26.1 Introduction.

26.2 SIRVA.

26.3 MOSET and TIDESI.

26.4 ABACUS.

References.

Index.




二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Optimization Techniques Technique Problems Solving Complex

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2026-1-10 18:46