楼主: 初等数论892
391 0

[英文文献] ABC of SV: Limited Information Likelihood Inference in Stochastic Volatilit... [推广有奖]

  • 0关注
  • 0粉丝

等待验证会员

学前班

0%

还不是VIP/贵宾

-

威望
0
论坛币
0 个
通用积分
0
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
10 点
帖子
0
精华
0
在线时间
0 小时
注册时间
2020-9-19
最后登录
2020-9-19

楼主
初等数论892 发表于 2004-11-25 13:11:23 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
英文文献:ABC of SV: Limited Information Likelihood Inference in Stochastic Volatility Jump-Diffusion Models-SV的ABC:随机波动跳扩散模型中的有限信息似然推断
英文文献作者:Michael Creel,Dennis Kristensen
英文文献摘要:
We develop novel methods for estimation and filtering of continuous-time models with stochastic volatility and jumps using so-called Approximate Bayesian Computation which build likelihoods based on limited information. The proposed estimators and filters are computationally attractive relative to standard likelihood-based versions since they rely on low-dimensional auxiliary statistics and so avoid computation of high-dimensional integrals. Despite their computational simplicity, we find that estimators and filters perform well in practice and lead to precise estimates of model parameters and latent variables. We show how the methods can incorporate intra-daily information to improve on the estimation and filtering. In particular, the availability of realized volatility measures help us in learning about parameters and latent states. The method is employed in the estimation of a flexible stochastic volatility model for the dynamics of the S&P 500 equity index. We find evidence of the presence of a dynamic jump rate and in favor of a structural break in parameters at the time of the recent financial crisis. We find evidence that possible measurement error in log price is small and has little effect on parameter estimates. Smoothing shows that, recently, volatility and the jump rate have returned to the low levels of 2004-2006.

我们开发了新的方法来估计和过滤连续时间模型随机波动和跳跃使用所谓的近似贝叶斯计算,建立概率基于有限的信息。相对于基于概率的标准版本,所提出的估计器和过滤器在计算上具有吸引力,因为它们依赖于低维辅助统计,从而避免了高维积分的计算。尽管它们的计算简单,我们发现估计器和过滤器在实践中表现良好,并导致模型参数和潜在变量的精确估计。我们将展示这些方法如何结合每日内信息来改进估计和过滤。特别是,已实现的波动度量的可用性帮助我们学习参数和潜在状态。将该方法应用于标普500股票指数动态的随机弹性波动模型的估计。在最近的金融危机中,我们发现了动态跳跃率的存在和有利于参数的结构性断裂的证据。我们发现,日志价格中可能的测量误差很小,对参数估计的影响很小。平滑显示,最近,波动性和跳跃率已回到2004-2006年的低水平。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝


您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-2-18 14:56